Simulation of seismic wave propagation in a poroelastic media: an application to a CO\textsubscript{2} sequestration case

Emmanuel Anthony1,2,3, Nimisha Vedanti1,3,*

1. CSIR-National Geophysical Research Institute, Hyderabad, 500007, India
2. Department of Physics, Imo State University Owerri, Nigeria
3. AcSIR-NGRI, Hyderabad, 500007, India

*email: nimisha@ngri.res.in

Keywords
Poroelasticity, CO\textsubscript{2} injection, Staggered grid, Finite difference, Seismic modelling

Summary

Wave propagation through a porous media allows us to understand the response and interaction that occur between the elastic rock matrix and the fluid. This interaction has been described by Biot in the theory of poroelasticity. We developed a velocity stress staggered-grid finite difference algorithm for the propagation of seismic wave in a poroelastic media using the Biot’s formulation. The Biot’s equations were discretized using the second order and fourth order approximation for the temporal and spatial grid, respectively. To test our algorithm, we considered two models with the poroelastic properties estimated from well log obtained from Utsira formation, Sleipner, North Sea. The first model represents a homogeneous media with a single layer sandstone saturated with brine; however, the second model is considered as a two-layered homogeneous model, to see the effect of CO\textsubscript{2} injection into the brine formation. As predicted by Biot’s theory, the fast and slow compressional waves were observed in the particle velocity snapshots at frequencies higher than the Biot’s frequency.

Introduction

The study of seismic wave imaging and inversion of the subsurface properties of the earth are usually carried out with the assumption that the propagating media are acoustic or elastic, which assumed a single-phase theory (Sheen et al., 2006). Seismic methods based on the single-phase acoustic or elastic medium have been successfully used to identify geological structures (Sheen et al., 2006). These approximations are valid in these models, but the properties of the pore fluid such as the density, bulk modulus, viscosity etc. are not considered. Thus, to describe wave propagation in fluid-saturated media, Maurice Biot proposed the theory of poroelasticity (Biot, 1956, 1962). This theory incorporated or considered the properties of the fluid, which were not accounted for by the single-phase media. Biot also predicted the existence of two compressional waves and one rotational wave in a poroelastic media. When a seismic wave propagates through a porous medium, a pressure gradient is created or we can say that a pressure relaxation is achieved. This pressure difference leads to fluid flow as the fluid moves in the pores with respect to the solid. This process is referred as wave-induced fluid flow, and it is accompanied by the dissipation of energy. The wave-induced fluid flow can be used to monitor the time-lapse seismic response of a reservoir, happening due to change in the fluid properties such as the injection of CO\textsubscript{2} into a reservoir (Morency et al., 2011). In literatures, analytical solutions to the Biot’s equations using a simple homogeneous poroelastic media exist (Dai et al., 1995), (Boutin and Bonnet, 1986), and (Burridge and Vargas, 1978). However, for a complex model like in the case of CO\textsubscript{2} injection, a numerical methods like finite difference method (FDM) (Zhu and McMechan, 1991; Dai et al., 1995; Wenzlau and Muller, 2009; Itz et al., 2016; O’Brien, 2010), pseudo-spectral methods (Carcione, 1996b,a; Ozdenvar and McMechan, 1997), finite element method (Roberts and Garboczi, 2002) and spectral element (Morency, 2008) have been used. In the present work, we used the FDM to solve the Biot’s equations for the poroelastic media and demonstrate the application of the developed algorithm on the models, prepared using the poroelastic properties derived from the well log data obtained from the Utsira sand, Sleipner field, North Sea.
Simulation of seismic wave propagation in a poroelastic media

Theory
Biot (1956a,b, 1962) established the theory of poroelasticity with these assumptions:
1. The fluid phase is continuous
2. The porous medium is statistically isotropic
3. Seismic wavelength is larger than the pore size
4. Deformations on the elastic rock matrix is small

The Biot’s poroelastic equations for an isotropic medium are given by

\[\rho \ddot{u} + \rho_f \ddot{w} = (\lambda_c + \mu) u + \mu \nabla^2 u + aM \nabla \nabla \cdot w \] (1)
\[\rho_f \ddot{u} + m \dot{w} = aM \nabla \cdot u + M \nabla \cdot w - b \dot{w} \] (2)

where \(u \) is the solid displacement, \(w \) the displacement of the fluid relative to the solid.
The stress and pressure are given by

\[\tau_{ij} = 2\mu e_{ij} + \delta_{ij}(\lambda_c e_{kk} + aM w_{kk}) \] (3)
\[p = -aM e_{kk} - M w_{kk} \] (4)

where \(e_{ij} \) is the strain tensor, \(\delta_{ij} \) is the Kronecker delta.
The Biot’s equations above (equation 1,2,3 and 4) can be written in the velocity-stress formation as proposed by Virieux (1984) as

\[\dot{v}_i = \left(m \rho - \rho_f^2 \right)^{-1} \left(m \tau_{ij} + \rho_f p_j + \rho_f b w_j \right) \] (5)
\[\dot{w}_i = \left(m \rho - \rho_f^2 \right)^{-1} \left(-\rho_f \tau_{ij} - \rho \tau_{ij} - \rho b w_i \right) \] (6)
\[\dot{\tau}_{ij} = \mu (v_{ij} + v_{ji}) + (\lambda_c e_{kk} + aM w_{kk}) \delta_{ij} \] (7)
\[p = -aM v_{ii} - M w_{ii} \] (8)

for a homogenous media, the Biot’s characteristic frequency is given as

\[\omega_B = \frac{b \phi}{\nu \rho_f} \]

where \(b = \frac{\eta}{\kappa} \)
The physical parameters in the equations above are listed in Table 1

Table 1: Table of constants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of mineral</td>
<td>(\rho_s)</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>Density of the fluid</td>
<td>(\rho_f)</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>Density</td>
<td>(\rho)</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>Effective fluid density</td>
<td>(m)</td>
<td>Kg/m³, (T \rho_f/\phi)</td>
</tr>
<tr>
<td>Porosity</td>
<td>(\phi)</td>
<td></td>
</tr>
<tr>
<td>Fluid viscosity</td>
<td>(\eta)</td>
<td>Pas</td>
</tr>
<tr>
<td>Permeability of the medium</td>
<td>(\kappa)</td>
<td>m²</td>
</tr>
<tr>
<td>Tortuosity</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>Mobility of the fluid</td>
<td>(b)</td>
<td>Pas/m²</td>
</tr>
<tr>
<td>Lame constant</td>
<td>(\lambda_c)</td>
<td>Pa, (\lambda + \alpha^2 M)</td>
</tr>
<tr>
<td>Shear modulus</td>
<td>(\mu)</td>
<td>Pa</td>
</tr>
<tr>
<td>Fluid storage coefficient</td>
<td>(M)</td>
<td>Pa, (K_s(1 - \phi - \frac{K_f}{K_s} + \frac{T \phi \kappa}{K_f}))</td>
</tr>
<tr>
<td>Effective stress</td>
<td>(\alpha)</td>
<td>Pa, (1 - \frac{K_f}{K_s})</td>
</tr>
<tr>
<td>Solid bulk modulus</td>
<td>(K_s)</td>
<td>Pa</td>
</tr>
<tr>
<td>Fluid bulk modulus</td>
<td>(K_f)</td>
<td>Pa</td>
</tr>
<tr>
<td>Drained bulk modulus</td>
<td>(K_d)</td>
<td>Pa, (\lambda + 2/3 \mu)</td>
</tr>
</tbody>
</table>

Discretization of the Poroelastic equations

The poroelastic wave equations (equation 5,6,7 and 8) were discretized using the staggered grid finite difference method after assigning field variables at different positions on the staggered grid, as shown in Figure 1.

![Figure 1: Staggered grid finite difference method for Poroelastic wave equation](image-url)

In 2D, the discretized poroelastic equations can be written as:

\[D_x v_x = a^2 (D_x^2 v_x + D_x^2 v_{xx} + \rho_f D_x p + \rho_f b \dot{w}_x) \]
\[D_t v_x = a^2 (D_x^2 v_x + D_x^2 v_{xx}) + \rho_f D_x p + \rho_f b \dot{w}_x \]
\[D_t w_x = a^2 (\rho_f (D_x^2 v_x + D_x^2 v_{xx}) - \rho D_x p - \rho b \dot{w}_x) \]
\[D_t w_x = a^2 (\rho_f (D_x^2 v_x + D_x^2 v_{xx}) - \rho D_x p - \rho b \dot{w}_x) \]
Simulation of seismic wave propagation in a poroelastic media

\begin{align*}
D_t \tau_{xx} &= (2\mu + \lambda_c)D_x v_x + \lambda_c D_x v_z + \alpha M(D_x w_x + D_z w_z) \\
D_t \tau_{xz} &= (2\mu + \lambda_c)D_x v_x + \lambda_c D_x v_z + \alpha M(D_x w_x + D_z w_z) \\
D_t \tau_{xz} &= \mu(D_x v_x + D_z v_z) \\
D_t p &= -\alpha M(D_x v_x + D_z v_z) - M(D_x w_x + D_z w_z)
\end{align*}

where \(K_s, K_d, K_{gr}, K_f\) are bulk moduli of saturated rock, dry rock, grains, and fluid, respectively, and \(\varphi\) is the porosity.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
 & Saline water & CO\(_2\) \\
\hline
\(\rho_s\) & 2650 kg/m\(^3\) & 2650 kg/m\(^3\) \\
\(\rho_f\) & 1090 kg/m\(^3\) & 650 kg/m\(^3\) \\
\(\varphi\) & 2072 kg/m\(^3\) & 1910 kg/m\(^3\) \\
\(K_s\) & 36.9GPa & 36.9GPa \\
\(K_d\) & 2.3GPa & 0.0675Gpa \\
\(K_{gr}\) & 2.6815Gpa & 2.6815Gpa \\
\(\mu\) & 0.792145760Gpa & 0.792145760Gpa \\
\(\phi\) & 0.37 & 0.37 \\
\hline
\end{tabular}
\caption{Saline aquifer and CO\(_2\) in Utsira sand}
\end{table}

1. Homogeneous model

We consider a uniform homogeneous model with dimension 2000m x 2000m with saline aquifer properties as given in Table 2 (Figure 2). Ricker wavelet is used as an explosive source with a dominant frequency of 40Hz. The source is located in the middle of the grid that is \((x; z) = (500; 500)\). The grid step and time step are 2m and 0.2ms respectively.

Figure 3 shows the snapshot of the wave propagation within the seismic frequency. In this frequency regime, one can clearly see that the slow p wave does not propagate because it is diffusive. The slow p wave propagates at frequencies higher than the Biot’s frequency or when the diffusive parameter \(b\) is 0, as can be seen in Figure 4. This is in line with the predictions of Biot’s theory.

Figure 2: Homogeneous model
Simulation of seismic wave propagation in a poroelastic media

Figure 3: snapshot of \(v_x \) at a frequency below Biot’s frequency

Figure 4: snapshot of \(v_x \) at a frequency below Biot’s frequency

Figure 5: \(v_x \) shot gather at a frequency below Biot’s frequency

Figure 6: \(v_x \) shot gather at a frequency above Biot’s frequency

2. Two-layer homogeneous model

We designed a model made up of two homogeneous layers (Figure 7). The lower layer contains 100% brine, while the upper layer contains 30% of CO\(_2\) and 70% of brine. The properties of the model is shown in Table 2. Ricker wavelet is used as an explosive source and is located \((x; z) = (300; 200)\). The snapshot and shot gather of the vertical particle velocity are shown in Figure 8, Figure 9, Figure 10 and Figure 11. The slow p wave is generated at a frequency higher than the Biot frequency as expected, and there are some mode conversions at the
Simulation of seismic wave propagation in a poroelastic media

boundary. These results are in line with the work done by Sheen et al. (2006).

Figure 7: Saline aquifer and CO₂ in Utsira sand model

Figure 8: Snapshots of \(v_x \) at a frequency below Biot's frequency

Figure 9: Snapshots of \(v_x \) at a frequency above Biot's frequency

Figure 10: \(v_x \) shot gather at a frequency below Biot's frequency

Figure 10: \(v_x \) shot gather at a frequency above Biot’s frequency

Conclusion

In this work, we have developed a velocity stress staggered-grid finite difference algorithm for the propagation of seismic wave in a poroelastic media. We applied the algorithm developed to two types of models with the poroelastic properties estimated from well log data obtained from the Utsira
Simulation of seismic wave propagation in a poroelastic media

Formation, Sleipner, North Sea. As predicted by the Biot’s theory, the fast and slow compressional waves were observed in the particle velocity snapshots at frequencies higher than the Biot’s frequency.

References

Al-khalifah, T. and Tsvankin, I., 1995, Velocity analysis for transversely isotropic media; Geophysics, 60, 150-1556.
Carcione, J., 1996, Full frequency-range transient solution for p-wave in a fluid-saturated viscoacoustic porous medium; Geophysical Prospecting, 44, 99-129.

Acknowledgments

Emmanuel Anthony wishes to acknowledge CSIRTWAS for the award of the fellowship. Authors are grateful to the Director NGRI and AcSIR coordinator for their support and permission to publish this work.