Southwestern Continental Margin of India: A Poly-Rift Basin

Kenneth D’Silva*, Nathaniel Moses Duggirala, Rabi Bastia, Ravi Verma, Srinivas Tenepalli, Sreejesh V Sreedhar
Petroleum Business (E&P), Reliance Industries Limited, India
e-mail: Kenneth.D’Silva@ril.com

Summary

Continental Rifting is often the first phase in the construction of a new ocean basin. They often develop as a set of shears, approximately 120° apart from one another- a triple junction, one of which may ultimately fail to develop beyond a set of extensional basins. Paucity of knowledge about sub-basalt geology of the South-Western Continental Margin of India (SWCMI) from seismic and drill data, crippled plate tectonic reconstructions and thereby limited the understanding of pre-Deccan basin-forming and basin-modifying tectonics (Kingston, 1983). Consequently, integration of deep seismics, gravity, magnetics and revision and synthesis of regional tectono-stratigraphic models permitted the proposal of a new paradigm of poly-rift system for the southwestern continental margin of India.

Introduction

The orientation of the Mahanadi, Godavari, Kuruduvadi and Kayana rift-systems prior to India’s breakup from Madagascar and Seychelles were sub-parallel to India’s west coast. The fact, that crustal unrest during the breakup of Madagascar and Seychelles took place along the South-Western Continental Margin of India (SWCMI), rather than the other sub-parallel mobile zones viz., Mahanadi, Godavari, Kurduvadi and Kayana rift-systems, suggests that this margin was a much weaker and pre-existing mobile belt. Consequently, tectonic reconstructions imply atleast four episodes of rifting, of which three are visible on deep seismic imagery. EM modeling studies proposed the presence of a triple junction south of Kanya-Kumari, with its failed-rift-arm situated in the Mannar Basin (Raval and Veeraswamy, 2003). Seismic, gravity and magnetics indicate a sedimentary thickness of more than 6.0 second two-way-time for Mannar basin and SWCMI (Fig. 5). When all these evidences are amalgamated, a new paradigm of multi-episodic rejuvenations for SWCMI emerged.
Origin of the Rifts

The Indian plate has been a part of the Earth’s tectonic history from the time of the first supercontinent, Ur ~3.0 Ga (Rogers and Santosh, 2001). At around 1.9 Ga, the cratons that formed expanded Ur, Atlantica, Artica and Nena accreted together to form the supercontinent Columbia (Fig. 1). Deep seismic has identified the Kurduvadi and Kayana rifts below the Deccan basalts (Fig. 2). The mafic igneous suites of the Mahanadi and Godavari rifts in India have been correlated with the Belt-Purcell and Uinta rifts respectively, of the Columbia region of North America, circa 1.5 Ga (Rogers and Santosh, 2001). The horizontal stresses that led to the separation of Nena and Atlantica from Columbia, 1.6 Ga -1.4 Ga, led to the formation of these mesoproterozoic rifts in India that extend into East Antarctica and N. America. The Unkar, Apache and Pahrump rifts of N. America would most probably be related to the Indian west coast, Kuruvadi and Kayana rifts. The Kuruvadi and Kayana rifts along with the Indian west coast, although unproven, are suggested to contain mesoproterozoic sedimentary sequences like the Mahanadi and Godavari grabens. Furthermore, these already weak mobile belts would have been reactivated by later tectonic events as they tend to channelise stresses into them, unlike the more stable cratons (Veerawamy and Raval, 2004).

Paleogeographic Reconstruction and Interpretation

The Gondwana reconstruction of the continents during the Jurassic (Fig. 3a), shows the presence of sub-parallel failed rifts in the Morondova, Mascarene basins, Mahanadi and Godavari trends, all of which witnessed sedimentation from the Permo-Carboniferous, if not older, and have the same trend as the west coast of India (Plummer, 1994). The paleo-drainage for all these rifts at that time was sourced from Antarctica and drained towards the Nubian plate.

The oldest sediments encountered by wells in the SWCMI were of Late Cretaceous Age (Santonian, 85±1 Ma). However, the greatest evidence for a weakened crust in the SWCMI is that the basalts in St. Mary’s Island and dykes in Karnataka and Kerala (both in southwestern India) have been correlated with the extensive basalts seen in eastern Madagascar, circa 90 Ma. As seen in Fig. 3b, the coast parallel Late Cretaceous volcanics in Madagascar (de Wit, 2003), appear to have been sub-parallel to the other mesoproterozoic rifts. This helps to postulate that the India-Madagascar rift was in a well-advanced stage at that time, and this weakness in the crust led to splitting between Madagascar and India as opposed to the other sub-parallel rifts.

Fig. 1. Reconstruction of the Columbia supercontinent (~1.5Ga). SI-Siberia; BA-Baltica; GR-Greenland; EAnt-coastal zone of East Antarctica correlative with marginal orogenic belts in Australia, India and South Africa but separated during post-Pangea rifting; AU-Australia; NA-North America; IN-India; MA-Madagascar; 21-Zimbabwe; KA-Kalahari; SAm-South America; NWAf-Northwestern and central Africa; TZ-Tanzania (from Rogers and Santosh, 2001).

Fig. 2 Rifts in eastern India (left) and western North America (right), ~ 1.5Ga. Arrows show present north for each area (from Rogers and Santosh, 2001).
Fig. 4 is a seismic profile in the SWCMI, showing a thick sedimentary pile and possibly signatures of the India-Madagascar rift. The KT and Santonian markers, shown in the section, indicate that the initial easterly basinal tilt was followed by a compressional event resulting in the present day inverted grabenal trends. These structures, interpreted to have been formed due to the Indo-Eurasian collisional tectonics, are the primary targets under focus for Mesozoic exploration.

Onshore geologic studies and wells drilled in the Mannar basin, Sri Lanka had encountered Jurassic sediments, extending to the deeper offshore region. These sediments are seen to extend into southwestern margin of India with the help of long offset regional seismic (Fig. 5).

Fig. 5 (a) Shows a seismic line in the Mannar Basin of Sri Lanka where Jurassic sediments were drilled. (b) Seismic line in the southwestern Indian basin, where Jurassic sediments are conjectured to be present. A-structural inversion due to the Himalayan collision, B-KT boundary, C- End of Karoo rift (?), D-Karoo rift & Older (?)

Gravity-magnetic modeling in this area indicated about 7km of sedimentary thickness. All this points to the existence of a Western Indian rift, which had been created during the mesoproterozoic extension, and had been reactivated many times in its history, peaking during the periods of heavy sedimentation.

<table>
<thead>
<tr>
<th>Tectonic episode</th>
<th>Continents involved</th>
<th>Age</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meso-Proterozoic Rifts</td>
<td>Breakup of Nena and Atlantica from Columbia</td>
<td>1.5Ga</td>
<td>Rogers and Santosh, 2001.</td>
</tr>
<tr>
<td>India-Madagascar Breakup</td>
<td>Breakup of Madagascar from India-Seychelles.</td>
<td>84Ma</td>
<td>Norton and Sclater, 1979.</td>
</tr>
<tr>
<td>India-Seychelles Breakup</td>
<td>Breakup of Seychelles from India</td>
<td>65Ma</td>
<td>Norton and Sclater, 1979.</td>
</tr>
<tr>
<td>Himalayan Orogeny</td>
<td>Collision of India with Eurasia</td>
<td>40Ma</td>
<td>Norton and Sclater, 1979.</td>
</tr>
</tbody>
</table>

Table 1 shows a tectonic event chart based upon the interpretation from integrated geophysical and regional geologic studies.
Paleo-Environment and Source Rocks:

Detailed study of satellite-derived free-air gravity data and shipborne magnetic data inferred that the Northern Natal Valley acted as a spreading center between the Mozambique Ridge and Africa from 133-125.3 Ma (Tikku, 2001). However, the 167.2Ma (Fig. 6) reconstruction shows that the Mozambique Ridge acted as an independent microplate much earlier than the existence of the spreading center in the Northern Natal Valley (Marks and Tikku, 2001, Cox, 1992 and Tikku et al., 2002). The Mozambique ridge acted as a barrier for deep water circulation between the Mozambique proto-ocean and Weddell Sea until 125 Ma, creating suitable conditions for the deposition of source rocks. Cores collected from the wells drilled during ODP leg 113, on the continental slope north of Dronning Maud Land, have indicated anaerobic bottom water conditions during Valanginian to Hauterivian (Mutterlose and Wise, 1990). This restricted condition would have been ideal to preserve shales with considerable organic content which is akin to the present day Caspian Sea.

Conclusion

Tectonic Reconstructions show that the Western Continental margin of India owes its origin to the mesoproterozoic extensions that were responsible for the formation of Morondova, Mascarene, Mahanadi and Pranhita-Godavari rifts (Fig. 7). All these mobile belts had been rejuvenated many times through geologic history resulting in correlatable stratigraphy and some were taken advantage of during the ultimate breakup of the continents. The correlatable basalts in Madagascar and Southwest India and finally the position of the breakup of India from Madagascar prove that the SWCMI was a far more developed rift system than the Mahanadi and Godavari. All this proves that the Western Continental Margin of India has had a long eventful history and unlike contemporary understanding did not form by chance during India’s breakup from Madagascar and Seychelles.

The anoxic environment in the proto-Mozambique Ocean during the Valanginian-Hauterivian period would have been ideal to preserve shales of very high organic content. Also, the later coincidence of the global anoxic event at the Cenomanian-Turonian Boundary during the breakup of Madagascar from India would be beneficial to generate more potential source rocks for the region.

Tectonic synthesis developed by integrating regional seismic, well information and plate-tectonic reconstruction studies indicate the existence of multi-episodic rifts coinciding with global anoxic events, thus providing a high
possibility for the presence of Mesozoic source rocks along the south western continental margin of India.

References


Konig, M., Processing of shipborne magnetometer data and revision of the timing and geometry of the Mesozoic break-up of Gondwana, unpublished dissertation submitted at the Department of Geosciences at the University of Bremen, Germany, 2005.


