Analysis of Hydrocarbon prospectivity of Mio-Pliocene sediments of shallow water blocks of Mahanadi Basin

A. K. Sarkar*, Mahanadi Block, MBA Basin, ONGC Ltd. Kolkata-71, India

E-mail Id of Presenter: ashok_1964@yahoo.com

Summary

Mahanadi offshore basin is one of the passive margin basins off the east coast of India, flanked by producing KG Basin to the SW and prospective Bengal basin to the NE. The study area lies within shallow water part of the basin, south of present day coast line. The Neogene period, in general, is marked by basinward progradation. The Miocene sequence, which unconformably overlies the Eocene sequence was deposited in shallow marine to deltaic environment. Overlying Neogene, the sequence comprises of clastics belong to a prograding delta system.

The study area is covered with extensive 2D seismic as well as 3D seismic data. A prominent wedge out to the north west of block area is seen for Lower Miocene. In the Upper Miocene, erosional unconformity is observed which demarcates Miocene and Pliocene sections. Another prominent stratigraphic feature is a Carbonate build up at Paleocene level beyond shelf edge.

3D Seismic data are interpreted volume wise and total five Mio-Pliocene prospects are identified which are as follows: (i) A slope fan associated with high amplitude stand out in Mid Miocene sequence (ii) Erosional geomorphic high of upper Miocene (iii) Mio-Pliocene cut and fills towards western part of 3D area (iv) Slope channels and (v) Paleocene wedge out feature below Eocene sequence on Eastern part of study area (v) Late Miocene Basin floor fan (convex upward) on the eastern part of the study area.

There is an absence of four way dip closures within the 3D survey area and a paucity of leads. No fault closure is present in the block. The slope fan prospect was made up of reworked storm deposits and present on the shelf seaward of the shoreline at or below wave-base. The reservoir-quality of these deposits seemed to be inferior due to finer grain size of sand.

The only silver lining in the block is the presence of gas in MDT sample in the recent shallow water well from very thin sand with a small aerial extent which offers an important exploration lead.

Introduction

Mahanadi offshore basin is one of the passive margin basins off the east coast of India, flanked by producing KG Basin to the SW and Bengal basin to the NE. This basin has hitherto been explored for hydrocarbons, by many agencies. During 80s’ seven exploratory wells (MAA-1 to MAG-7) were drilled in the offshore part of the basin but failed to strike commercial hydrocarbons except a number of hydrocarbon indications in the form of gas readings and fluorescence in cuttings and side wall cores in Miocene and Eocene sections. These indicate that the basin is capable to generate hydrocarbons.

The present study area falls within the shallow water block of Mahanadi adjacent to NEC block. The study was carried out in two areas (Area-I & II), covered by 3D seismic (Figure-1 a, b, c) of 240 and 160 sq. km respectively for evaluating the hydrocarbon potentiality and identification of areas of interest. The study has brought out cut and fill, remnant, slope and basin floor fans prospects within Miocene in area-1 and Eocene shelf margin build up, slope and basin floor prospects within Miocene in area-II.
Three exploratory shallow water wells were drilled namely XSW-1, YSW-2 & ZSW-3 but failed to strike commercial Hydrocarbon. The only silver lining in the block is the presence of gas in MDT sample in the well YSW-2 from a very thin sand with a small aerial extent which offers an important exploration lead. In view of the hydrocarbon indication, the potential of the block needs to be considered particularly for stratigraphic plays within Mio-Pliocene sequences.

Geological setting and Stratigraphy

The Mahanadi offshore basin, along with other east coast passive continental margin basins, came into existence during the break up of Gondwanaland (Fuloria, R. C., 1993). The basement configuration of the basin shows NE-SW to ENE-WSW trending horst and graben morphology. The synrift phase of the basin is characterized by predominantly volcanic sequences and intertrappeans of Early Cretaceous age. The early drift phase, in Mahanadi Basin, was marked by deposition of Late Cretaceous shales followed by deposition of coarser clastics and basinal tilt towards southeast (BEICIP., 1989). The hinge zone represents a prominent tectonic element in the area providing slope, which increases from 1-2 degrees at the shelf edge to 6-12 degrees on the slope. Beyond the slope, it flattens out to 1-2 degrees in the basin fore deep Oligocene is found to be almost absent in the shelf part as seen in the drilled shallow wells data and probably indicating period of non-deposition or erosion throughout the shelf part of the basin. As a result of non-deposition of during Oligocene in the shelf part, upper Paleogene section was subjected to erosion. Channel cut and mound type features are present at many places. The Neogene period in general, is marked by basin ward progradation. The Miocene sequence which unconformably overlies the Eocene sequence was deposited in shallow marine to deltaic environment. The depositional system during Miocene was affected by three major cycles of sea level changes (Dasgupta, U., et al 1985). The upper Miocene/Pliocene was deposited in prograding highstand regime with comparatively rapid rate of sediment supply.

Seismic events identification and mapping

In Study Area-I & II seven seismic events have been identified and mapped (Fig. 1 a, b & c). Among these, the seismic events corresponding to Eocene top and within Mid. Miocene are common in these two 3D areas and detailed analyses of seismic events, mapped area wise shown Figures (2&3), are enumerated below.

![Fig.1(a,b,c): shows study area within shallow water blocks of Mahandi Basin](image)

Horizons are correlated with the nearest well MAC#3, MAB#2 and MAG#7. Sea bottom has been tracked and correlated for bringing out of bathymetric configuration in the block.

An attempt has been made to integrate the 2D seismic data of the block with the present 3D seismic data. The major reflectors have been correlated in few 2D lines. The geomorphic high continues up to 2D line XAT-27 where it is again cut by another canyon. Shelf edge is marked parallel to the line MAAL-14. Beyond, the seismic package is basically represented by chaotic, low amplitude facies.
Area-I

Seven horizons corresponding close to Eocene top, Early Miocene, within Middle Miocene, within Late Miocene, within Lower Pliocene and top of Pliocene are tracked and correlated (Fig.2) with the nearest well MAC#3. Miocene top is close to the major cut surface (G horizon of 3D interpretation) and Pliocene top (H horizon of 2D interpretation).

![Fig.2 shows Trace XY of Study Area I showing mapped horizons](image1)

![Fig.3 shows line XY of Study Area II showing mapped horizons](image2)

Area-II

In area-II seven seismic events, falling within various stratigraphic levels, have been identified and mapped shown in Figure 3. These seismic events were tied up with the well data of MAB-2, falling in the north and outside of present 3D area, and correlated throughout the volume. These events, corresponding to the tops of identified seismic sequences, have been taken up for mapping from Early Palaeocene to within Pleistocene through Late Palaeocene, Eocene top, Mid. Miocene, Late Miocene and Miocene.

Features mapped and depositional set up

To build up viable depositional model in the area as a first step sequence stratigraphic study was carried out in association with SE extension of the block area. Total 6 sequence boundaries were mapped above Mid-Eocene carbonates. Mapping of paleo shelf edges of Neogene section (20 Ma above) was carried out using 2D seismic data for three different packages, that is Early Middle and Late Miocene.

The study areas are located towards base of paleo slope/shelf edge of Miocene. The deep marine clastic depositional system is envisaged with subsequent reworking.

3D Seismic data were interpreted volume wise and total five Mio-Pliocene prospects were identified.

Area-I

(i) A slope fan associated with high amplitude stand out in Mid Miocene sequence (I-prospect)
(ii) Erosional geomorphic high of upper Miocene (G-prospect).
(iii) Mio-Pliocene cut and fills towards western part of 3D area (H-prospect).
(iv) Slope channels and fan Complexes (J prospect)
Area-II

(i) Late Miocene Basin floor fan (convex upward) (A-Prospect).

Study Area I:

Slope fan (I-Prospect): The Slope Fan is a high amplitude feature identified within basal part of Middle Miocene (Fig. 4a). The time thickness map shows a NW-SE linear trend for this high amplitude feature. The trend of the body suggests the sediment supply is from NW that coincides with sediment input direction of Mahanadi delta. Internally the feature contains high amplitude parallel reflection. The high amplitude package possibly indicates presence of sandy facies encased within low amplitude probably a shaly facies in Fig. 4b (Mitchum, R. M., 1985). This feature is approximately 6.35 km wide (along cross line) extends 6.5km (along inline) and might indicate submarine fan formed during Middle Miocene.

The envisaged slope fan and other seismic features within Mid-Miocene section in Study Area I has been viewed earlier through Voxel Geo to firm up the prospectivity of the area. A high amplitude feature was identified within basal part of Middle Miocene. The high amplitude package possibly indicates presence of sandy facies encased within low amplitude probably a shaly facies. (Figs 4a, 4b & 4c enclosed)

Relict feature within Late Miocene (G-prospect): Below Mio-Plio unconformity surface the late Miocene feature (Fig 5a) having high amplitude parallel reflections show four way closure in the structures map (Fig. 5b) towards the NE part of the study area. The high amplitude reflections truncate against the Canyon cut surface at Miocene top. The clustering of high amplitudes in RMS amplitude map indicates possible presence of coarser clastics in that part of the area (Fig 5b extended figure).

From the drilled wells of Mahanadi basin it is observed that marine sediment is prevalent above the base of Miocene and Pliocene. As the sequence boundaries within this section are represented by the unconformity in each case, transgressive sequences follow immediately above the sequence boundary. These transgressive (TST) facies do not have much thickness
in the shelf and slope part of the basin. The rest part of the sequence above these transgressive facies (TST) is represented by normal regressive facies of HST.

During transgressive phase (TST) and high stand system tracts (HST) dominant part of the coarser sediments carried by river are trapped in the shelfal, coastal and shallow water areas. Available sediments in the deep water are predominantly finer and are carried through restricted channels as clay rich low density turbidity currents. Due to that the slope is devoid of coarser clastics and is dominated with the presence of mud-flows/shaly material as slope apron. Present prospect-G is a relict feature of original slope apron cut by the channel/ canyons on either side.

Channel fill within Early Pliocene (H-prospect): The stacked channel fill sequence of Early Pliocene within the major canyon cut at Miocene top level shows the orientation of sand bodies in NW-SE direction in time thickness map. This shows the sediment distribution pattern from Mahanadi Delta.

East of well MAC-3 within Miocene section one mega, erosional cuts, prospect’ H’ (Fig.5a) with fill surface showing reversal in strike is observed beyond shelf edge. Time map on top of the fill appears as a southerly plunging nosing feature with swing of contours at the channel axis. Depth Conversion made after considering the low velocity layers has brought out a well defined structure with an adjacent westerly low.

Slope channels and fan Complexes (J-prospect): Development of slope channels and fan complexes were found within Pliocene sequences in the western part of 3D volume (Fig.6a). At places vertically stacked one over another and often coalescing with each other. Though the contorted reflection characters within the lower fan body indicate that it may be slump deposits(Stephen J King., 2005). But above this, a body with high amplitude reflection character between traces 1100 to 850 and inline 350 or 334 around time level 650ms (TWT) at position-Inline 334 & trace 1020 may be interesting (Fig. 6b). These are proven play types in KG and Mahanadi sector with potential biogenic/ non-thermo genic dry methane charge. The combined aerial extent of the two channels is more than 13Km2 and vertical thickness of the package is about 100ms (TWT). (Figs 6a &6b).

Fig-6(a) . DIP SECTION ACROSS THE AREA SHOWING SLOPE CHANNEL AND FAN ON SLOPE

Fig.6b: RMS AMPLITUDE OF SLOPE CHANNEL PACKGE (50MS WINDOW)

The reservoir-quality of these deposits seemed to be inferior due to finer grain size of sand. The high amplitude stand out of the body “I” after drilling had been revealed to be hard streak or a remnant compact body of argillaceous matter. Differential compaction might have given
rise to high amplitude. Moreover there were no faults or mobile substrate present in the block to help migration from deeper depth. In general in Mahanadi Basin Miocene sequence experienced concomitant subsidence and deposition. Therefore, very thick Miocene sequence never experienced any sort of sub-areal exposure to give rise to Low Stand Tract (LST) phase in Early, Middle or Late part of Miocene. So this might be another reason for the absence of coarser clastics and thereby the good reservoir.

Study Area II:

![Fig.7a Trace XZ shows Basin floor fan](image-url) ![Fig. 7b: Spectral slices at 24Hz](image-url) ![Fig.7c : Eastern Basin floor fan schematic model & Voxel view](image-url)

Mio-Pliocene feature: One geo-body (Fig.7c) was identified shown in Trace XZ (Fig.7a) and 3 horizons were correlated to generate attributes and static structural disposition. Average absolute amplitude suggest the disposition of a basin floor fan body. The fan body in the eastern part of the area lies on the terrace portion of the area (Fig.7a). Spectral decomposition (SD) slices at 10 HZ to 24 HZ (Fig.7b) suggest very thick sand bodies all over the area. The schematic model of Eastern Basin Floor fan is shown depicted in Fig.7c.

Conclusions

1. The present area, restricted within the block represents low shelf gradient, thereby low energy. The absence of any significant amplitude variation within the reflectors in case of G- prospect reflected the shadow of low energy environment, under which clay or shale. was deposited.
2. Highstand System Tract (HST) phase away from the land-side belong to low energy facies and as per interval or time period of deposition in Miocene.
3. During transgression, waves and tides eroded sediments from the substrate at the shoreline and transport them both landward and seaward.
4. There is an presence of four way dip closures within the 3D survey area and a few leads. No clear fault closures are present in the block.
5. The prospect “T” was made up of reworked storm deposits and present on the shelf seaward of the shoreline at or below wave-base. The reservoir-quality of these deposits seemed to be inferior due to finer grain size of sand.
6. In general in Mahanadi Basin Miocene sequence experienced concomitant subsidence and deposition. Therefore, very thick Miocene sequence never experienced any sort of sub-areal exposure to give rise to Low Stand Tract (LST) phase in Early, Middle or Late part of Miocene. So this might be another reason for the absence of coarser clastics and thereby the good reservoir.

Recommendations

As per the results of the early and recently drilled wells no commercial hydrocarbon discovery is met with. The only silverlining in the block is the presence of gas in MDT sample in the well YSW-2 from a very thin sand with a small aerial extent which offers an important exploration lead.
Acknowledgement

The author is hopeful of his sincerest endeavor to be fruitful/effective as much as possible. In this regard, the opportunity provided by Sri B.S.N. Murthy, ED-Basin Manager to write this paper on shallow water block of Mahanadi Basin, has been acknowledged. Also acknowledged is the assiduous help and assistance of Mr. S. K. Das, GM-Block Manager, Mahanadi without whose support the whole endeavor might have meted with wilderness. Thanks are also extended to Mrs. Trishna Saha, DGM(Geology) who helped to unfold the history encrypted within the seismic signatures of the frozen rock-mass buried deep in the earth.

References

1. BEICIP., 1989, Report by Oil India Limited on basin modeling; Mahanadi-North east coast Basins