An analysis of Low Resistivity Low Contrast (LRLC) sand GS-11 in well A-7 - A case study

105249@ongc.co.in

Keywords
Low Resistivity Low Contrast (LRLC), Gandhar, Cambay Basin

Summary
Gandhar is one of the major onland oil and gas fields in South Cambay basin, spreading over 800 sq. km. in the Jambusar-Broach block. The field is situated in the western flank of Broach depression between Dadhar river in the north and Narmada river in the south. The field which exhibits a significant geological complexity is producing significantly from multi layered sand bodies from GS-0 to GS-12. The present study analyses low resistivity pay of GS-11 sand unit in west of main Gandhar area where it is oil bearing.

In this study it was tried to analyze the log signatures of sand GS-11 in the block of well A-1 and correlate it with other geological data. So far, few exploratory and development wells viz A-1, A-4, A-5, A-6 and A-7 have been drilled in this block to explore and develop GS-11. Recently drilled exploratory well A-7 is an oil and gas producer from GS-11. This sand is of particular interest, as in the well A-7, OWC was inferred to be present below a calcareous streak. But a detailed look into the FMI log exhibits that the sand developed below the calcareous streak consists of scattered conductive minerals substantiated by SEM studies of SWCs, hence the low resistivity. Also SWCs within this interval exhibited GYF and cut indicating this sand to be hydrocarbon bearing. Based on log correlation with nearby wells, the present well is structurally deeper at all formation tops as well as at the top of pay sands w.r.t to A-1 & A-6 and shallower w.r.t Gandhar-324. Top of GS-11 was encountered at 2705m (TVD-KB) at 677.8m horizontal drift.

Figure – 1: Location map of study area

Figure – 2: Depth Map and sand thickness map of GS-11

From the G&G data generated from this well, sands GS-5C, GS-6B and GS-11 were observed to be well developed. On testing, GS-11 produced oil and gas on self with Qoil: 36.5 m³/day and Qgas: 8,986 m³/day via 6mm bean. No water cut is observed during initial testing.
An analysis of Low Resistivity Low Contrast (LRLC) sand GS-11 in well A-7 - A case study

Hydrocarbon strike of commercial nature in this well has validated the concepts envisaged during identification of the prospect. But the extent of reservoir in down dip direction is yet to be demarcated.

Approach

So far, few exploratory and development wells viz. A-1, A-4, A-5, A-6 and A-7 have been drilled in in the block to explore and develop GS-11 sand. Recently drilled exploratory well A-7 is oil and gas producer from GS-11. Log characteristics in this well and the nearby wells were studied carefully. A trend was sought to be established with wells drilled in the NE part of the area. A few correlation profiles have been defined and a relation was tried to be established with wells which are envisaged to be in the feeding direction of the GS-11 in the direction NE to SW.

A Brief History of GS-11 in A-1 Block

Based on well A-1, two wells viz. A-2 and A-3 were drilled in the up dip direction to explore GS-5C, GS-7 and GS-12 sands. The well A-2 drilled towards south-west of A-1 was found to be hydrocarbon bearing in GS-6B, while A-3 drilled towards north-west of A-1 was found to be water bearing. Log correlation of the wells A-3, A-4, A-1 and A-9 shows GS-11 to be shaled out towards A-4 although all other sands from GS-5C to GS-12 are well developed. Based on these data the effective sand thickness & relief map of GS-11 have been modified after drilling A-2, A-3 & A-4.

GS-11 in A-1 is the first hydrocarbon strike in the block of A-1. The in-place reserves were estimated to be 0.83MMt. To expedite the development and to monetize the field, four locations proposed in this area. All the four locations were released by the competent authority. One of the proposed wells A-4 was drilled towards west in PD/PDD category and was found to be devoid of GS-11 which forced to rethink and revise the existing model.

The block was re-calculated and the in-place reserves were re-estimated using the pressure and production data of A-1. The study was carried out at IRS, Ahmedabad using ‘Material Balance’ to estimate the reserves and finally the in-place reserves were revised to 0.748MMt which is 0.08MMt less than earlier estimation by REC. Since there is no much variance in in-place reserves, the area holding these reserves must also be nearly same. As the reserves towards south-west are negated after drilling A-4, it was opined that the possibility of the oil pool extension is towards down dip. Subsequently, A-6 was drilled as a development well towards south of A-1, and produced oil from GS-11. Encouraged by the success of A-6 and also the log data of A-1 is indicating a shale contact, an exploratory location was drilled in down dip direction to explore GS-11 as A-7.

Technical progress and observations

The log characteristics of well A-7 vis-à-vis the nearby wells were carefully studied. About 9m thick GS-11 (2820-2829m) is developed in this well.

• From the G&G data generated from this well, GS-5C, 6B and 11 sands were observed to be well developed. On testing, GS-11 (2820.5-2823m) produced Oil and Gas on self with Qoil: 36.5 m3/day and Qgas: 8,986 m3/day via 6mm bean. No water cut was observed during initial testing (Figure-3).

• SWCs within the concerned interval exhibited GYF and cut indicating this sand to be oil bearing (Table-1).

Table – 1: Side wall core lithological description report of the concerned interval

- The Sand GS-11 is a laminated reservoir with alternate layers of sand and shale.
- From SEM analysis of SWCs, sample analysis and other studies, presence of kaolinite is observed in the pore spaces and also the sand grains are coated with chlorite, may be due to bio-turbation (Figure-4).
An analysis of Low Resistivity Low Contrast (LRLC) sand GS-11 in well A-7 - A case study

Figure-4: SEM images of side wall core

- FMI processed data shows the presence of conductive minerals (Figure-5).
- The above said observations may be the cause of low resistivity against GS-11.
- ELANPlus processed data has shown an estimated water saturation of 65-70% against the shaly sand interval (2826-2829m) below the calcareous streak which shows this sand to be interesting from hydrocarbon point of view substantiated by the SP log (Figure-6). If tested in all probability, this interval will produce clean oil as the existing water seems to be bound water. Also side wall core collected at 2827m was described as argillaceous sandstone exhibiting GVF/cut.

Figure-5: FMI log of Object-III: 2820.5-2823m

Figure-6: ElanPlus processed data
An analysis of Low Resistivity Low Contrast (LRLC) sand GS-11 in well A-7: A case study

- Correlation of wells A-7 and A-6 (400m west of A-7) suggests that the sand lobes of GS-11 are different as can be inferred from resistivity patterns (Figure-7a).

FMI log also indicates that the paleo-current direction is from North-East to South-West. It is also corroborated from correlations with A-8.

It is known that the principal causes of Low resistivity-low contrast (LRLC) reservoirs are:
1) Laminated sequences of sand and shale,
2) Dispersed clay,
3) Clay coating,
4) Presence of conductive minerals like pyrite, siderite, illmenite etc.
5) Small grain size,
6) Presence of high amount of clay bound and capillary bound water.

And the major depositional systems containing LRLC reservoirs are:
1) Channel fills,
2) Delta front deposits,
3) Turbidites and
4) Deep water fans including levee-channel complexes.

In the past, these intervals were often overlooked, considering them to be wet or tight. These LRLC intervals which contain significant reserves, can be recognized today through proper identification and evaluation techniques using advanced logging techniques and samples/cores.

Conclusions and Recommendations
From the studies carried out, it is envisaged that the pay sand GS-11 is a Low resistivity-low contrast (LRLC) pay sand. The decrease in resistivity below the calcareous streak in GS-11 of A-7 may not be interpreted as water bearing. The general trend of the pay sand GS-11 is from NE-SW with the quality and thickness of the sand getting better towards A-7, which may increase the chances of encountering the sand in West/West-Southwest of well A-7 – well A-6 alignment or may help in delineating the pay sand boundary. The sand GS-11 is not developed further SW in A-2. But in the down-dip direction i.e. towards NE of A-7 is a promising direction. A few step out wells may be planned towards east and south-eastern direction of A-7 in down dip direction for delineation of the pool. 3D-3C seismic data acquisition is already planned in the area for better understanding of reservoir / entrapment mechanism and sand dispersal pattern.

Bibliography


An analysis of Low Resistivity Low Contrast (LRLC) sand GS-11 in well A-7- A case study

Hydrocarbon Bearing GS-11 Sand Through Acoustic Impedance Property.


Acknowledgement
The authors express their thanks to ONGC for providing infrastructure and giving permission to publish the paper. Authors are grateful to Shri Mr. A. V. Sathe, ED-Basin Manager, WON Basin and Shri D.M.R. Sekhar, GGM, Asset Manager for facilitating publication of this paper and for their encouragement and support. Special mentions need to be made for GGM- Head Drilling Services, GM – Head Well Services and their team for providing help, support and guidance as well as all necessary data / information for compiling and preparing this report. Authors acknowledge the help rendered by their seniors and colleagues for the technical suggestions during this work.