Equivalent Media Theory

In seismic frequency band, closely spaced parallel fractures behave like an anisotropic medium. A number of equivalent media theories were proposed in the last two decades. The most general and accurate equivalent media theories were proposed by Hudson (1980) and Schoenberg (1980) for penny-shaped cracks and planar discontinuities (fractures), respectively. Even though both the approaches are completely different, they result in the same equivalent elastic coefficients for cracks and fractures. This observation suggests that the shape of the fractures cannot be uniquely resolved by seismic methods. The equivalent elastic coefficients are expressed in terms of fracture parameters such as fracture orientation, fracture or crack density and fracture in fill (gas or fluid).

Basic Numerical Procedure

Equation of motion is given as (Aki and Richards, 2002)

\[\rho u_i = \sigma_{ij,j} + f_i \]

(1)

and constitutive relationship for general anisotropic media can be written as

\[\sigma_{ij,j} = C_{ijkl}u_k,l \]

(2)

where \(u_i \) is the particle displacement, \(\sigma \) is the stress tensor, \(f_i \) is the body force per unit volume, and \(c_{ijkl} \) summarizes the elastic properties of the medium. Equations 1 and 2 are linear first-order coupled equations for particle displacement or velocity, and stress. Taking first time derivative of equation 2 and substituting velocity of the particle for displacement in equation 1, we obtain a first-order system of equations in velocity and stress which can be solved numerically. Standard Staggered Grid (SSG) Finite-Difference Scheme

To implement finite-difference scheme, all the quantities \((c_{ijkl}, \rho, \sigma, u_i) \) in equations 1 and 2 need to be discretized.

Virieux (1984) first described a standard way of discretization of these quantities in a staggered grid (figure 1(a)).

The main advantage of using the staggered grid is that the spatial derivatives are calculated at half the grid
Fig. 1: (a) Elementary cell of standard staggered grid: Notice that σ_{xz} is not defined at the location of stiffness tensor c_{ijkl}. Density ρ of the medium is also not defined at the location where particle velocities v_x and v_z are defined. This necessitates the interpolation of the c_{ijkl} and ρ. (b) Elementary cell of rotated staggered grid: Notice that all the components of the stress are defined at the same location. Hence, no interpolation of the stiffness tensor c_{ijkl} is needed. But the density ρ of the medium still needs to be interpolated to estimate the particle velocities v_x and v_z.

points. It should be noted that grid size is an important parameter in finite-difference scheme. Large grid size allows for computation of large models, but very large grid size tends to push the numerical dispersion in the computation out of acceptable limits (e.g., Marfurt, 1984). Furthermore, small grid size requires small time-steps to avoid numerical instability, which will increase the computation time.

In the staggered grid discretization (figure 1(a)), some coefficients of the elastic stiffness matrix c_{ijkl} and density ρ need to be interpolated to compute the off-diagonal stress components (in 2D that is σ_{xz}, and in 3D those are σ_{yz}, σ_{xy}, σ_{xz}) and the particle velocities, respectively. Moreover, if the medium posses the symmetry lower than orthorhombic, which is the case if the medium has two sets of non-orthogonal fracture sets, some components of the strain or particle velocities need to be interpolated to compute the Hook sum (equation 2).

To test the accuracy of this method, wave propagation was simulated in a large model of HTI media (figure 2(a)). The elastic constants of the medium are as follows (the factor of 10^9 N/m2 is omitted): $c_{11}=15.0$, $c_{33}=30.0$, $c_{13}=4.0$, $c_{44}=8.0$, and $c_{15}=4.0$. The density of the medium is 2000 kg/m3.

The model has 450 grid points with equal grid spacing of 10 m in all the directions. An explosive source is placed at the center of the model. The source wavelet is a Gaussian with a dominant frequency of 15 hz. A snapshot in 3D at 400 ms after the explosion is shown in figure 2(a).

Rotated Staggered Grid (RSG) Finite-Difference Scheme As mentioned earlier, in case of medium symmetry lower than orthorhombic, standard staggered grid discretization turns out to be error prone. To calculate the synthetic section in monoclinic or triclinic media a better grid discretization is needed. The straightforward solution seems to be defining all components of stress at one grid location and all components of the particle velocity at the next grid location. But this scheme will require huge computer memory and longer computation time to run a realistic model. To circumvent this problem, another discretization scheme in a rotated staggered grid was proposed by Gold et al. (1997). Here, for the sake of simplicity, discretization is explained in 2D. The medium is divided into rectangular or square grids or cells. All the particle velocities are defined at the nodes of the cell. All the components of stress, strain and medium properties (c_{ijkl} and ρ) are defined at the center of the cell (figure 1(b)). Now, either the elastodynamic equations 1 and 2 can be rotated along the diagonals of the cell and spatial derivatives of velocities and stress components can be calculated at the appropriate grid locations, or spatial derivatives can be first calculated along diagonals of the cells and then transformed back along the edges of the cells. It turns out that the algebra involved is not very complicated in the second approach, and hence, it can be implemented numerically with ease (e.g., Saenger et al., 2000).

We implemented this scheme in 3D for general anisotropic media with 21 independent elastic constants. To test the robustness and stability of this method in general anisotropic media, wave propagation in a large model of a homogeneous triclinic medium was simulated. An explosion source is kept at the center of the model. The dominant frequency of the Ricker wavelet is 15 hz. Figure 2(b) shows a snapshot of wave propagation in 3D at 400 ms after explosion. All three types of waves (qP, qS1, and qS2) can be identified.

Modeling Examples

To test the accuracy of the modeling algorithms and to simulate the fracture response in surface seismic data, a number of 3D shotgathers were generated for various subsurface models. Both explosive source and plane-wave shear source were used to generate these seismic sections.

A typical three at-layered subsurface model (Figure 3) was used to generate all the seismic sections. Although the finite-difference algorithms are capable of handling subsurface models with complex geometry, at-layered
models were used to study the fracture response in the seismic data. Top and bottom layers are isotropic, and the middle layer has one set of vertical parallel fractures. Background P-wave and S-wave velocities α, β and density ρ in each layer are: 2.5 km/s, 1.4 km/s and 1 g/cm3 ; 3.5 km/s, 2.0 km/s and 2.3 g/cm3 ; 4.5 km/s, 3.0 km/s and 3.5 g/cm3. There are 141 and 86 geophones at the interval of 10 meters in x- and y-direction, respectively. For convenience, lines along x- and y-axes will be called x-line and y-line, respectively. The shot is at the middle of y-axis. The near-offset is 150 meters in x-direction. The survey layout remains the same for all the seismic experiments.

Fractures density e in the middle layer is 0.05; fractures can be either gas- or water-filled, and are striking in y-direction (fracture normal is parallel to x-direction). ΔN and ΔT are used to estimate the equivalent stiffness matrix for the middle layer (see Bakulin et al., 2000 for details). Table 1 summarizes all the relevant parameters for the Figure

Table 1: Notice that ΔT remains same for gas- and water-filled fractures. Thus, c_{44} and c_{55} of stiffness matrix remains same for gas- and water-filled fractures which implies that vertical S-wave velocities S^\parallel and S^\perp in both the cases also remain the same.

4 shows an x-line at y-location 20 meter from the shot generated using an explosive source when the middle layer has gas-filled fractures. A Gaussian wavelet with dominant frequency of 15 hz was used as source function. Although all three velocity components v_x, v_y and v_z were recorded, only v_x (figure 4(a)) and v_y (figure 4(b)) are displayed to observe the S-wave splitting due to presence of the fractures in the middle layer. Reflection about 1.5 s is the converted S-wave from the interface between middle layer and bottom layer. Notice the time-difference at near-offset at 1.5 s; v_x arrivals are polarized normal to fracture strike and v_y arrivals are polarized parallel to fracture strike. Thus, v_x are traveling slower than v_y.

Above experiment was simulated with a plane-wave shear source. The particle motion is polarized linearly at 45 clockwise from x-axis; i.e., v_x and v_y are excited in phase
with equal amplitudes. Figure 5 shows the \(v_x \) and \(v_y \) for both gas-filled (Figures 5(a) and 5(b)) and water-filled (Figures 5(c) and 5(d)) fractures. Notice the time-difference between \(v_x \) and \(v_y \) arrivals for both the cases; they appear to be same. This is due to the fact that constants \(c_{44} \) and \(c_{55} \) in stiffness matrix remain same for gas- and water-filled fractures, which eventually leads to same vertical S-wave velocities (\(S_\| \) and \(S_\bot \)) in both the cases. This observation suggests that stacked S-wave sections are unable to reveal the fracture-infill (gas or water) in the subsurface. Hence, some other techniques (e.g., AVO analysis, P-wave NMO analysis, S-wave NMO-analysis) need to be applied to fully characterize fractures in the subsurface.

Discussion and Future Work

So far, we have shown the results only from at layers. We are planning to simulate the wave propagation in more complex models to understand the combined effect of anisotropy and complex structures.

References

