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Summary 

 
The present paper describes the fractional derivative use in a pressure transient data analysis with phase redistribution for 

fractal reservoir in a geological environment which is not possible by conventional methods. The application of pressure 

derivatives in pressure transient test data interpretation by reservoir engineers is common place since the work done by Bourdet 

et al. in 1989 on this subject. The analysis of such type of data in reservoir characterization is well known as inverse problem. 

The fractal geometry in a dynamic pressure transient tests data plays a vital role for heterogeneity characterization. 

 

Understanding fractures is important for exploration and production in naturally fractured reservoirs. The existence of where 

fractures are and how the flowing ones are interconnected through fracture network modeling is beneficial for effective planning 

of hydrocarbon recovery measures. The goal of the pressure transient data interpretation is to establish a reasonable estimate of 

the reservoir properties of interest for better understanding of reservoir behavior. Recent experiences have brought forward 

more reasonable expectations of geologists, geophysicists, petrophysicists and reservoir engineers by sharing their knowledge in 

integrating various sources of measured data in drilled wells in finding the reservoir heterogeneity. The pressure transient test 

and production data are with reservoir engineers and it may provide further clues about the nature of the fracture network within 

a reservoir. 

 

The computer aided matching technique for both pressure and its derivative are used in estimating the reservoir properties from 

measured pressure data of heterogeneous reservoir. By a process of iteration the geological and flow data can be reconciled to 

produce plausible models which could help to constrain reservoir simulation. 

 

The acquisition of pressure transient reservoir data and their continued evaluation at different locations with geo-statistical 

methods are foundational to sound the reservoir management to develop the field and implement the applicable improved 

oil/enhanced oil recovery schemes. 

 

 

Introduction: 

 
In reservoir with a low permeability matrix the majority of 

the fluid flow is along fractures. The stress acting on these 
fractures can have a significant effect on the flow of fluid 
through fracture network. It has been shown by many 
researchers that the transmissivity of the fracture varies 
with normal stress acting on the fracture. For fluid flow 
through a fracture network it is necessary to consider both 
static connectivity of the fracture network based on length, 
orientation and spatial distribution of the fractures and the 
dynamic connectivity of the network the influence of stress 

acting on fluid flow through the fracture network (as given 
in Figures A and B).  

 

Fractional calculus is a branch of mathematics which deals 
with application of derivatives and integrals of real order. It 
is an old subject since its development started from Leibniz 
and Euler. In recent years, the fractional derivatives have 
been used to model physical processes, leading to the 
formulation of fractional differential equations. Fractional 
calculus has been very popular by its wide applications 
with fractal which includes viscoelasticity, electro 
analytical chemistry, biology, physics, pressure transient in 
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oil industry & etc. The use of fractional derivative for 
modeling pressure transient data analysis in fractal 
reservoir is quite natural. A growing number of 
increasingly sophisticated measurements have 
demonstrated that some variations in reservoir 

deliverability are related to interactions between changing 
fluid pressure, reservoir stresses, and natural fracture 
permeability during production or injection. The sensitivity 
to changing stresses is probably most prounced in tight, 
over pressured, naturally fractured reservoirs where the 
elasticity of rock and large pressure changes can cause 
significant changes in fracture apertures. Fractures in such 
reservoirs may both dilate during injection and close during 

drawdown. The mechanical properties of the strata in some 
reservoirs are such that entirely new fracture sets can be 
created solely by production related stress changes. 

 
The various researchers have shown that the transport in 
fractually fractured media using the anomalous diffusion 
theory in the sense that the complex geometry slows down 
the particle motion (Chang and Yortsos [1}, Acuna and 

Yortsos [2]). Park et al [3] have improved it by proposing 
the modified equation to allow the variation in flow path 
and the memory of the fluid flow. 

 
Examination of various processes in fractal medium usually 
results into the equations in fractional derivative, which is 
defined by Oldham and Spanier [4]. It is generally accepted 
that for spatially correlated media such as fractally 

fractured reservoirs, the memory of the fluid and non-
locality are very important in all stage of production. It is 
known that fractional calculus successfully describes such 
characteristics of the anomalous diffusion. There are two 
major approaches of fractional calculus for the study of 
anomalous diffusion. The latter is known to fully describe 
diffusional feature relatively well. The fractional calculus 
was introduced for the analysis of fractal behavior in 
transport process. Fractional derivatives make it possible to 

consider the memory of the property by definition 
(Podlubny [5]).  
 

Mathematical Formulation for the flow equation 
 
We begin with the definition of a fractional derivative and 
its application since they are used in the formulation of the 
problems. Several definitions of a fractional derivative and 

integral have been proposed. The most frequently used 

definition of a fractional derivative of order α > 0 is the 

Riemann-Liouville definition, which is straightforward 
generalization to non-integer values of Cauchy formula. 
The Riemann-Liouville fractional derivative is defined as 
[5] 
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Where,  is the Gamma function, n is positive integer such 

that n-1< α < n and  α > 0. 

 
An alternative definition of the fractional derivative was 
proposed by Caputo [5] 
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The major utility of this type of fractional derivative is 
caused by the treatment of differential equations of 

fractional order for physical applications, where the initial 
conditions are usually expressed in terms of a given 
function and its derivatives of integer order, even if the 
governing equation is of fractional order. Similarly, 

introducing the arbitrary positive real number α the 

fractional integral of order α > 0, defined as 

 

∫
−−

Γ
=

t

dfttfJ
0

1 ,)()(
)(

1
)( τττ

α
αα

       t > 0,  

+ℜ∈α   

                                                                           (3)  



 

 
Fractional Derivative in Pressure Transient data Analysis with Phase 

Redistribution in Fractal Reservoir for Reservoir Characterization 

   

 
 

It is important to emphasize that what seems to be really 
interesting in studying fractals via fractional calculus, are 
the non-integer physical dimensions that arise dealing with 
both fractional operators and fractal sets. The mathematical 
formulation of pressure transient equation for fractal 

reservoir where the fracture network is largely divided by 
backbone fractures and fractal fracture loops has been 
given by Metzler et al [6]. The mass balance equation over 
fractal loop has been derived by Park et al. [3] and the 
radial diffusion equation for pressure in dimensional forms 
is given below 
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Where, 0 ≤ γ < 1 from the definition of fractional diffusion 

equation of order, γ. This equation reduces to standard 

diffusion equation, when γ = 1, θ = 0, and d =1, 2, 3 for 

Euclidean dimension. 
 

The initial condition is given as follows 
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The inner boundary conditions are given below    
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The outer boundary condition is that of an infinite acting 
reservoir and is given as 
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The Fair [7] has modified the van Everdingen and Hurst [8] 
equation of sand face rate for constant wellbore storage 
effect by adding a term to account the pressure change due 
to phase redistribution with the result being  
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Thus, phase redistribution was modeled as a changing 

wellbore storage phenomenon. The pressure function PφD, 

has the following properties 
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Application of increasing/decreasing wellbore storage 
model to field data was first used by Fair as exponential 
form for changing storage pressure function as 
 

( )Ddt
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and Hegeman et al. [9] has assumed the changing storage 
pressure as 
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Where, CφD and αD are changing storage pressure 

parameter and changing storage time parameter. The other 
users have found the class of function as in equation (10b) 
that obeys properties (9a) - (9c), was found to exhibit 
characteristics representative of the field data.  

 

Solution of the Problem 
 
The partial differential equation (4) and (10) together with 
initial and boundary conditions (5) - (8) are solved with the 
use of Laplace transformation. The Laplace transform of 

fractional derivative of order Dα f (t) is given as   
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Where, F(s) is the Laplace transform of, f (t). 
Alternative the Laplace transform for the Caputo fractional 
derivative is as 
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 The Caputo fractional derivative appears more suitable to 
be treated by the Laplace transform technique in that it 
requires the knowledge of the initial values of the function 
and of its integer derivative of order j = 1, 2, …, n-1.The 
Caputo fractional derivative is a regularization in the time 
origin for the Reimann-Liouville fractional derivative by 
incorporating the relevant initial conditions.  
 

Applying the Laplace transforms to the equations (4) and 
(10) and associated boundary conditions (5) to (9) a 
dimensionless pressure solution in Laplace space is 
obtained as 
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The general solution for wellbore pressure ( wDP ) in terms 

of fDP  and DPφ  in Laplace space is given as  
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Where CD, S, CφD, CmD and dW is wellbore storage constant, 

skin factor, changing wellbore storage parameter, 
momentum parameter and dynamic fractal dimension that 

effects the wellbore pressure measurements in the well. The 

equation (15) reduces to Park et al. [3], if CφD = 0 and CmD 

= 0. If z1/d
w is replaced with z1/2 and CmD = 0, CφD = 0, the 

equation reduces to the equation proposed by Chang and 
Yortsos [1]. The symbols used in the present paper are of 
standard type of petroleum industry and given in the 
reference [7]. The analytical inversion of equation (15) 
from Laplace space to real space is not possible. So, the 
numerical inversion technique of equation (15) from 
Laplace space to real space has been applied which is given 
by Stehfest algorithm [10]. 

 
In the present paper the new ratio of the form dlnPwD/dlntD, 
(pressure derivative and the pressure data) are generated 
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from the equation (15) for fractal reservoir. The well testing 
pressure derivative function defined by Bourdet et al. [11] 
is powerful mechanism for interpreting well test behavior 
(as in Figure C). It is, in fact, the most significant single 
development in the history of well test analysis. In this ratio 

curve we have two control points for matching the actual 
pressure data with the observed data i.e. the starting point 
and the last point of the curve. This gives the significant 
type curve match for the identification of the reservoir 
model to be used for automatic parameter estimation by 
using the regression analysis techniques. The curves 
generated are given in the figures1-5. The pressure and its 
derivative match plot of observed data of well no. A by 

regression analysis is given in figure 6 for fracture of 
middle intensity [12].  
 

Conclusions 

 
In fractal reservoir, due to the slowdown of the diffusion, 
the bottom-hole pressure is less affected by the formation 
compared to that of Euclidean reservoir under the same 

wellbore storage. For fractal reservoir, the increase of the 
dynamic dimension dW has the same effect of the increase 
of the wellbore storage effect. The results obtained in the 
present study may be useful for characterizing the fractality 
fractured reservoir and physical properties such as wellbore 
storage and skin have been compared with the Chang and 
Yortsos methods. The mathematical solution presented here 
is similar one recommended for pressure transient analysis 

of transient data from naturally fractured reservoir. The 
ratio curves obtained by pressure and its derivative are 
more useful to match the observed data on moving over the 
type curves presented here. The model is well suited for 
computer automated well test analysis from where 
permeability, fractal and spectral dimension, skin factor, 
wellbore storage and changing wellbore parameter and 
fault of impermeable/semi impermeable/fully permeable 
types can be predicted and the related parameter can be 

estimated. This method may provide a good way of 
matching reservoir response with simulated geology that is 
consistent with pressure dimensionless changing storage 
transient test data. The data of some of the well A has been 
matched and the parameters estimated are given in the 
figure 6. 
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Fig. A SCHEMATIC REPRESENTATIONS OF A FRACTURED 

MEDIUM (after Warren & Root, Streltsova-Adams)

Slabs
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Rhombohedral Rectangular 
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Random Fractures 

or Joints
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Random Fractures

Fig. B Idealization of Typical Fracture Patterns seen in Nature

Figure: C Pressure Response of idealized fracture patterns 
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Figure 4:  Pressure, derivative & its ratio curve for CD = 10x10
06

,   

 S = 10, dw = 2.21, df = 1.9, CΦD = 0, αD = 0         

Figure 2:  Pressure, derivative & its ratio curve for CD = 100,   

S = 10, dw = 2.05, df = 2, CΦD = -1.0, αD = 250         

Figure 3:  Pressure, derivative & its ratio curve for CD = 20, S = 0,  

dw = 2.05, df = 2, CΦD = -1.0, αD = 25         

Figure 1:  Pressure, derivative & its ratio curve for CD = 10, S = 5,  

dw = 2.05, df = 2, CΦD = 0, αD = 0         
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Pressure Transient Data Plot of Well No. A
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Figure 6:  Match Pressure & derivative curve for CD = 0.005, S=-4.75 

Xw=582 ft, Xe=1517ft, dw = 2, df = 2, ω=0.092, λ=4.210
-5

, k=593, md      
Figure 5:  Pressure, derivative & its ratio curve for CD = 100,          

S = 0, dw = 2.21, df = 1.95, CΦD = -1.0, αD = 25      


