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Summary 

 A formula has been used based on least-squares minimization process to compute nature of source geometry and 

parameters from SP anomalies. A Flow-chart is described to implement the algorithm. The FORTRAN code has been 

perfected to develop an iterative process for picking up origin of the anomaly. The code has been tested over simulated SP 

anomaly with and without random noise over all three different models. These analyses reveal that the methodology can 

tolerate random error of 30% with acceptable errors in computed parameters. The stability of the method is evaluated by 

varying polarization angle and depth. An effect of depth to spacing ratio is also studied. Further applicability has been 

demonstrated through two field examples adopted from published literatures. 

 

Introduction 

Self potential, naturally occurring potential difference 

has application in search of mineralised bodies. Though 

several methods of quantitative interpretation have been 

developed like ‘curve matching’ by Murty and 

Haricharan(1985),’derivative analysis’ by Abdelrahman 

et al.(2003),’Modelling and Inversion’ by Shi and 

Morgsn(1996), enhanced local wave number technique 

by Srivastava and Agarwal(2009), etc., but most of these 

are greatly influenced by the noise in the measured data. 

The present method developed by El-Araby (2003) may 

handle the random errors and noisy data more effectively 

than others. A least squares minimization approach (El-

Araby, 2003)  is implemented to determine the shape 

factor using all data points in the self potential anomaly. 

The problem is transformed into solving a nonlinear 

equation for shape factors to calculate other parameters 

like depth, polarization angle, etc. The only requirement 

of this method is to assign the origin of the source model 

on profile data. In the present approach I find out the 

optimum origin, data interval and graticule spacing 

(integer multiple of data spacing) by using an iterative 

approach to arrive at the best model with lowest RMS 

error. Synthetic data were generated with and without 

random noise (upto 30%) and applied to the code 

developed. This study indicates that the method provides 

model parameters in error less than 5%. The applicability 

of algorithm is further tested on field data over 

Suleymankoy and Weiss from Turkey with consistent 

results. 

Theory 

The general self-potential (SP) anomaly expression 

produced by most polarized structures along a principal 

profile over the body is given by the following equation 

at a point P(xi, z) (Figure 1) 
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Where  
z is the depth, 

h is the polarization angle between the axis of 

polarization and the horizontal, 
xi is a discrete point along x-axis  
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q is the shape-factor which defines the 
geometry of the source body,  

                k is the electric current dipole moment. 
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Figure 1: The target models showing coordinate system  and 

direction of polarization 
 

The shape-factors for a sphere, a horizontal cylinder and 

a semi infinite vertical cylinder are 1.5, 1.0 and 0.5, 

respectively. 
 

 Replacing k (unknown) by v(0), the self potential value 
at the origin (known) ,we get 
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Considering two observation point at xi=-s and xi =s and 

replacing depth (z) & polarization angle (θ) (unknown) 

by v(s) and v (-s) (known) we get an equation of only one 

unknown (q) as 
 

( , ) (0). ( , )                 ...(3)
i i

v x q v w x q=  

Where  

2 1

2 1/ 2 2

. .
( , )

[ ( )]

( ) ( ) ( ) ( )
  ,  

2. (0) 2. (0)

q i

i q q

i i

x P s F
w x q s

x F s x

v s v s v s v s
F P

v v

− +
=

+ −

+ − − −
= =

 

 

The unknown q can be obtained by minimizing 
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Which transforming into an iterative form becomes  

( )                                                  ...(5)
c i

q f q=
 

Where qc  is the calculated revised shape factor and qi is 

the initial shape factor.
 

Software (FORTRAN code) 

The software corresponding to the method described 

above has been generated using “FORTRAN POWER 

STATION”. The flow chart for the program is given 

below. 

start

do i=1,n

read n

read x(i),y(i) from input file

continue

read q,s1 ,s2 and e

do  s=s1,s2
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a=0,b=0,c=0
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continue
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continue

ql=q,q=a/(b+c)

If |q-ql|>e

write q z t k

Figure 2: Flowchart of the algorithm. 
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Following this flow chart a FORTRAN code has been 

developed. 

Synthetic data analysis 

The above mentioned program was compiled 

successfully but it is very necessary to test its ability to 
solve the interpretational problems. The first step to this 

approach is to work with synthetic data. Synthetic data of 
the spherical source model, a horizontal cylindrical 

source model and a vertical cylindrical source model 
were generated using the programming corresponding to 
equation no. (1) for different model parameter and the 

feasibility of the method is demonstrated. 

Spherical source model 

Self potential anomaly for buried spherical source has 
been calculated for the following parameter (polarization 

angle (θ) =30 degrees, dielectric constant (k) = -100) at 

different depth (z = 2, 2.5, 3, 3.5, 4, 4.5 and 5 unit) 
(figure 3) and then using that anomaly as an input of the 

developed software the corresponding model parameters 
have been computed. When the computed and actual 
model parameters are compared they show identical 
values (Table 1). 
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Figure 3: Synthetic data (noise free) for spherical source at 

different depth. 

depth q Z(unit) q(in degree) K

2 1.49999 1.99998 30.00019 -99.99673

2.5 1.49999 2.49997 30.00029 -99.99500

3 1.49998 2.99994 30.00053 -99.98978

3.5 1.49997 3.49990 30.00072 -99.98476

4 1.49996 3.99986 30.00086 -99.97998

4.5 1.49995 4.49981 30.00104 -99.97393

5 1.49994 4.99975 30.00122 -99.97182

 

Table 1: Outputs for model parameters, Model: Sphere,   q=1.5,   

q = 30,   K= -100, L=51, s=14. 

Horizontal cylindrical source model 

Similarly, synthetic self-potential anomaly for horizontal 

cylindrical source has been computed for polarization 

angle (θ) =30 degree, dielectric constant (k) = -100 and 

different depth (z = 2, 2.5, 3, 3.5, 4, 4.5 and 5 unit) 

(Figure 4) and the output of the execution were 
compared. In this case also the calculated and actual 

model parameters are same (Table 2). 
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Figure 4: Synthetic data (noise free) for horizontal cylindrical 
source at different depth. 
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depth q Z(unit) q(in degree) K

2 1.00000 2.00000 29.99999 -100.00030

2.5 1.00001 2.50002 29.99976 -100.00270

3 0.99999 2.99995 30.00039 -99.99519

3.5 0.99998 3.49990 30.00068 -99.99067

4 0.99998 3.99988 30.00076 -99.98846

4.5 0.99997 4.49983 30.00094 -99.98460

5 0.99996 4.99978 30.00109 -99.98082

Table 2:  Outputs for model parameters, Model: Horizontal 

cylinder,   q=1.0, �= 30,   K= -100, L=51, s=14. 

Vertical cylindrical model 

The computed model parameters for the synthetic data 

generated by a vertical cylindrical model (Figure 5) also 

follow the same path as in case of the other two common 
geometrical shapes discussed above. 
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Figure 5: Synthetic data (noise free) for vertical cylindrical 

source at different depth 

depth q z(unit) q(in degree) K

2 0.50000 1.99996 30.00046 -99.99805

2.5 0.50000 2.50000 30.00004 -99.99980

3 0.50000 3.00000 29.99997 -100.00020

3.5 0.50000 3.50004 29.99939 -100.00180

4 0.50001 4.00010 29.99939 -100.00390

4.5 0.49999 4.49939 30.00117 -99.99200

5 0.49999 4.99979 30.00106 -99.99224

Table 3: outputs for model parameters, Model : Vertical cylinder 
,   q=0.5,   ��= 30,   K= -100,  L=51,  s=14. 

Analysis of synthetic data with random noise 

Although the present method shows excellent results in 

case of noise free synthetic data but as the world of 
signal is no where noise free in practical consideration, 

so a random noise of 5% was introduced in each of the 
cases mentioned above. 

Spherical source model 

The self potential anomaly for a spherical source model 
mentioned earlier with 5% random noise is shown 

(Figure 6) below. Then using the programming the model 
parameters were calculated and the percentages of errors 

in each model parameters were plotted against depth. It is 

clear from the plot (Figure 7) that the error percentages in 
model parameters are less than 5% at each depth. 
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Figure 6: Synthetic data (with 5% noise) for spherical source at 
different depth 
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Figure 7: Error response in model parameters (best s) for 
spherical source with 5% random errors. 

Horizontal cylindrical source model 

Similarly, model parameters for the self potential 
anomaly for a horizontal cylindrical source with 5% 

random noise are shown in the graph (Figure 8). The 
error response curves in model parameter estimation 

indicate the applicability of this method in horizontal 
cylinder also. 

Vertical cylindrical source model 

The synthetic self potential data for vertical cylindrical 
source model with 5% random noise were also computed 

and the corresponding percentages of error in model 

parameters are shown (Figure 9). The result gives the 
proof that the vertical source model do not contradict the 
success of present method. 
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Figure 8: Error response in model parameters (best s) for 
horizontal cylindrical model with 5% random noise. 
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Figure 9: Error response in model parameters (best s) for vertical 
cylindrical source model with 5% noise. 

Stability of the method for polarization angle 

Any of the three above mentioned model was selected 

(say horizontal cylinder). Then synthetic data were 

generated (Figure 10). Then corresponding model 
parameters were estimated and error percentage in model 

parameters were calculated and plotted against 
polarization angle (Figure 11). 
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Figure 10: Synthetic data (with 5% noise) for spherical source 

at different polarization angle 
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Figure 11: Error response in model parameters as a function of 
polarization angle. 

Choice of the spacing S 

Again arbitrarily one model was selected (say horizontal 

cylinder for depth (z)= 5, polarization angle(θ) =30 

degree, dielectric constant(k) = -100,and noise = 5%) and 
the set of expressions of present methods were executed 

for different S (10 to 20)(Figure 12). It is crystal clear 
from the error response in model parameters(Figure 13) 

that there is a value of S (16) where all estimated model 

parameters comes very close to the actual one i.e. error 
percentage reduces simultaneously.  
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Figure 12: Synthetic data (with 5% noise) for horizontal 
cylindrical source at depth=5 units 
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Figure 13: Error response in model parameters as a function of 
spacing (s) 

Effect of increasing noise percentage in the synthetic 
data 

A buried spherical source model’s self potential response 
was recalculated for different percentage of random noise 

(5% to30%)(Figure 14). After estimating the values of 
shape factor, depth, polarization angle, and dielectric 

constant their percentage errors were plotted separately 

within a figure (Figure 15). The four graphs 
corresponding to the four model parameters illustrates 

that the error percentage does not exceed 5 marks even 
when noise percentage is 30.  
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Figure 14: Synthetic data for spherical source applying different 
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percentage of random noise 
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Figure 15: Error response in model parameters with increase in 
error percentage in synthetic noisy data for spherical source. 

Field examples 

To determine the practical utilities of the present method 

a field data of Suleymankoy, Turkey was also analyzed. 

Here, the observed data are set as an input of the present 

programming and the outputs are calculated. Then the 
RMS errors (defined in equation (6)) were calculated to 
have an idea about the closest fitted outcome.  

The RMS error can be defined as 

2[ ( ) ( , , , )]
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i i

i N
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Where Y (xi) is the observed anomaly and V is the 
computed anomaly. 

Suleymankoy anomaly 

The suleymankoy self potential anomaly at Ergani in 

Turkey of profile length 264m was digitized at a spacing 

of 6m using grapher and is shown in the figure (Figure 

17) below. 
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Figure 16: Sulleymonkoy anomaly, Ergani, Turkey; Profile 

length= 25 units (taking 1 unit=6m) 

The result obtained for different spacing S is shown in 

tabular form (Table 4) and for the origin at 72m the 

minimum RMS error (23.22) was obtained. Then the 

corresponding model parameters are used to generate its 

self potential response and it was compared with the 

actual anomaly. 

s  q  z  q  k  RMS err 

5 0.806  3.13  29.13  -682.76  24.080  

6  0.859 3.62  27.51  -900.74  23.213  

Table 4: Output results and corresponding RMS errors 
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Figure 17: Comparison of calculated and measured sp anomaly 

Finally the result was compared with the result obtained 

from the method of Srivastava and Agarwal (2009). 
According to them the source was cylindrical at a depth 

of 28.9m and source position was at 64.1m. Now the the 
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present algorithm says that the source is cylindrical at a 
depth of 21.76m with source position at72m and 

polarization angle 27.5 degree. Thus the result obtained 
is close to obtained by other methods. 

Weiss Anomaly 

 A self potential profile of Weiss anomaly (Figure 18) 

was digitized at 25 points at an interval of 7.7 m. The 
model parameters obtained from the algorithm are 
compared with the result obtained by other methods 
(Table 5). An appreciable result is visible in the table. 
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Figure 18: Weiss Anomaly, Ergani, Turkey 

 

 

Name of the method Depth Polarization 
angle 

Shape 
factor 

Yungul(1950) 53.8m 40o 1.5 

Bhattacharya & 
Roy(1981) 

54m 30o 1.5 

Abdelrahman(1996) 52.9m 35.3o 1.5 

Present method 45.7m 34.2o 1.67 

Table 5: Comparison of model parameters of Weiss anomaly 

Present Development: After realizing the importance of 

choosing right spacing and source position the algorithm 
was developed to test for a range of source position and 
Spacing. Further an interpolation algorithm was 

introduced into the software to make the spacing between 
two consecutive stations in user’s control 

 

 

Conclusion 

The present code gives exact values for synthetic noise 
free data for all the three types of model. Also the error 

percentage in model parameters is always less than 5% 
when using synthetic anomaly with 5% random noise for 

all the three types of models. This software is stable for a 
wide range of polarization angle, depth and spacing. 

There exists a value of S for which all the estimated 

model parameters shows minimum error percentage 
simultaneously. Further the error percentage in model 

parameters does cot exceeds the mark 5% even when the 
percentage of random noise reaches 30%. Finally the 

field examples of Suleymankoy and Weiss give a good 
response to the software and further extend its 
applicability to real field problems. 
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