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Summary 

 

The precise litho-facies change from well log records is a complex non-linear problem in geophysical data processing. Recorded 

well log signals are a complex superposition of non-stationary/non-linear signals of varying wavelengths and frequencies, 

shaped by the heterogeneous composition and structural variation of rock types in the earth. This weakens our ability to use 

traditional statistical techniques, which either fail in most cases to discriminate and/or, at best, do not precisely extract facies 

changes from such a complex well log signals. We propose here a new method, set in a Bayesian neural network (BNN) 

framework and employing a powerful Hybrid Monte Carlo (HMC)/Markov Chain Monte Carlo (MCMC) simulation scheme to 

identify facies changes, from complex well log data. We first construct a complex, composite, synthetic time series using the data 

from three simple models,i.e., first order auto-regressive Ar(1),  logistic,  and random white noise, and then we attempt  to 

identify individual signals in the pooled synthetic time series. We use the autocorrelation and the spectral characteristics of the 

individual signals as input vectors for training, validating, and testing the Artificial Neural Network (ANN) model.  The results 

show that the Bayesian separation scheme provides consistently good results, with accuracy at more than 74%. The method is 

demonstrated using well log data from the German Continental Deep Drilling Program (KTB). The scheme is able to 

discriminate lithofacies boundaries with accuracy of (~92%) in validation and of (~93%) in test samples. The efficacy of the BNN 

in the presence of colored noise suggest that the designed network topology is robust for up to 30% correlated noise; however, 

adding more noise (say 50% or more) obscures the desired signals. Our method provides a robust means for decoding finely 

detailed successions of lithofacies from complex well log data, yielding and understanding of the nature of the underlying 

inhomogeneous crust.  

 

Introduction 
 

It is accepted that sharp changes in rock properties recorded 
in form of well logs reflect physical boundaries and facies 
changes within various rock types. The well logs recorded 
in such rocks exhibit complex signal characteristic 
comprising nonlinear/non-stationary and random behavior. 

Discrimination of different rocks types/facies changes from 
such complex well log signals is, therefore, one of the 
important problems in geophysical signal analysis. During 
the past several years, conventional method such as 
graphical cross-plotting, and other statistical techniques e.g. 
multivariate statistical methods such as principle 
component and cluster analyses (Wolff & Pelissier-
Combescure 1982), and discriminant function analysis 

(Delfiner et al. 1987) have frequently been used to study 
borehole data. However, in complex geologic situations, 

such as in the presence of crystalline rocks where 
metamorphism leads to facies changes, it is not easy to 
extract accurate information from well log data using these 
conventional methods. Moreover, inferences drawn by such 
methods are also found to be ambiguous because of strong 
overlapping of nonlinear/non-stationary well log signals, 
which are also found to be tainted with deceptive, colored 

noise. The traditional techniques are semi-automated and 
require a large amount of data, which are costly and not 
always easily available. Further, these methods are also 
very tedious and time-consuming, particularly when 
dealing with noisy, complex borehole data.  

The Artificial Neural Network (ANN) technique is used 
extensively for the classification of complex nonlinear 
signals, due to its inherent ability to approximate the 

functional relationship between the input and the output 
space/domain simply by learning through examples, even if 
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there is no deterministic relationship between the input and 
the output space/domain (Bishop, 1995). ANN has 
consequently been applied to almost all branches of 
geophysics. Recently, Maiti and Tiwari have developed 
multiple linear and nonlinear algorithms for identification 

of rock boundary from the KTB borehole signal (Maiti and 
Tiwari 2005; Maiti et al., 2007). However, one of the 
problems with the very popular ANN-based back-
propagation algorithm (Rumelhurt, 1986) is that it does not 
converge to global minimum during the optimization 
process. We, therefore, propose a more powerful approach 
known as “Bayesian Inference” (Tarantola, 1987) to 
approximate the posterior probability distribution from data 

likelihood and prior information using a Monte Carlo 
algorithm in the case of the KTB well log data. These 
methods have proven to be very useful in several other 
contexts because they yield non-unique solutions of 
complex geophysical inverse problems. The practical use of 
a sampling-based inversion scheme, e.g., Hybrid Monte 
Carlo (HMC)/Markov Chain Monte Carlo (MCMC), for 
neural network training can be found in several previous 

works (Neal, 1996; Bishop, 1995). More recently, Maiti 
and Tiwari (2009) has developed new algorithm for 
borehole data analysis. However, the efficacy and 
applicability of these theoretical developments are not well 
explored for the case of complex and noisy signals. Hence, 
we explored the stability of the method on noisy, synthetic, 
nonlinear models of varying complexity and then applied 
the method to the real KTB data. We tested the method on 

various synthetic data generated from the well known 
models:  (1) Ar (1)/ stochastic random walk model, (2) 
complex/logistic, and (3) white noise. This experiment was 
intended to provide some useful guidelines and confidence 
in classifying complex data sets and thereby help in making 
sound physical interpretations of actual well log data. We 
applied the method to the following KTB bore hole data: (i) 
density (RHOB), (ii) neutron porosity (NPHI), (iii) gamma 
ray intensity (SGR), (iv) seismic P-wave transit travel time 

(DTCO), and (v) electrical resistivity (LLD) to discriminate 
among three litho-facies in a complex metamorphic region 
of central Europe.   

 

Data and Method 

Multilayer Perceptrons 
 
Multilayer Perceptrons (MLPs) networks are parallel 

computational units composed of many simple processing 
elements which mimic the biological neurons (Maiti and 

Tiwari 2009). Processing elements/ nodes are 
interconnected layer by layer and the functions of the each 
node are determined by connections, weights and biases, 
and the topology of the network (Bishop, 1995; Maiti et al 
2007; Maiti and Tiwari 2009). In the popular back-

propagation method, the error is usually minimized by 
adjusting the weights and biases using a gradient-based 
iterative chain rule from output to input layer (Rumelhurt, 
1986). The main drawback of this method is that it often 
becomes stuck in local minima on an error surface. 
 
In order to avoid the latter problem, we use hybrid Monte 
Carlo simulations (also well known as a leapfrog 

discretization scheme) in conjunction with Bayesian 
probability theory, which is naturally parsimonious, thus 
suiting our present needs. The complete details of the 
neural network topology and the learning rules can be 
found elsewhere (Poultron, 2001; Bishop, 1995). Here we 
can relate the geophysical observations to the model 
through the following forward equation: 

ε+= )(dfx …………….. (1) 

where f is a nonlinear function relating the model space 

and data space, ε  is error, and x  d are the data and the 

model respectively. A common way of inverting for the 

model, d  in equation 1 is via iterative least squares 

method.   This, however, does not provide uncertainty 
measures, which are essential for sound physical 

interpretation of geophysical observations (Tarantola, 
1987).  
 

Model Solution in the Bayesian frame work 
 
To solve the above equation 1 in the Bayesian framework, 
we recast it as follow 

);( wxfd NN= ……………………. (2) 

where, NNf  is output predicted by the network and w  are 

the network weight parameters. In the conventional 

approach for solving equation 1, regularization is often 
included to minimize the misfit function: 

RS
EE)w(E λµ += ………………… (3) 
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R  is the total number of weights and biases in the 

network, while λ and µ , which control other parameters 

(synaptic weight and biases), are known as hyper 
parameters. In this approach, the training of a network 
starts with an initial set of weights and biases and ends up 
with the single best set of weights and biases to optimize 
the objective function. In the Bayesian approach, a suitable 

prior distribution, say )(wP of weights is considered 

before observing the data, instead of considering only a 
single set of weights. Using Bayes’ rule, an a posteriori 

probability distribution for the weights, say )|( swP  can 

be defined as (Khan and Coulibaly, 2006), 

)(

)()|(
)|(

sP

wPwsP
swP = …………… (4) 

Here, )|( wsP  is a data set likelihood function, and the 

denominator, )(sP  is a normalization factor. The 

denominator )(sP  is intractable, so direct estimation of 

posterior )|( swP  is not possible. Using the rule of 

conditional probability, the distribution of the output for a 
given input vector x  can be defined in the form (Khan and 

Coulibaly, 2006), 

∫= dwswPwxdPsxdP )|(),|(),|( ………… (5) 

The major problem in Bayesian computation is evaluating 
the integrals for the posterior weights (equation 4) and for 
the network output (equation 5). In this regard, the MCMC 
sampling-based method plays an important role in 

evaluating posterior integrals. Equation 5 can be 
approximated as  

∑=
=

N

n
mwxdP

N
sxdP

1

),|(
1

),|( …………… (6). 

where }{ mw  represents a MCMC sample of weight vectors 

obtained from the distributions )|( swP ,  and N  is the 

number of points w sampled from )|( swP . 

 

 

 
Figure 1: (a) The acceptance threshold history against iteration. Rj denotes the rejected threshold. (b)The graph shows the simulation of a 

synthetic underlying function using 100 numbers of data points in the presence of noise via Hybrid Monte Carlo method. The standard deviation 

(std) of the noise is 0.3.(c)  HMC-based classification results of composite signals. Here in the chaotic model the value for constant “B” is 3.8, 

and for the stochastic model the assigned value for “A” is 0.5. Random white noise signal are added point by point (d). Same as above with “B” 

value = 4.0 for chaotic model and “A”=0.25 for stochastic model and random white noise signal as above.  
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Hybrid Monte Carlo (HMC) 
 
In the HMC algorithm, each trajectory is updated by 
approximating the Hamiltonian differential equations by a 

leapfrog discretization scheme (Duane et al., 1987). The 
MCMC algorithm draws an independent and identically 

distributed (i.i.d) sample },....,2,1;{
)(

Niw
i =  from the 

target distribution )|( swP . The Markov process forms a 

sequence of “states” to draw samples from the posterior 

probability. The chain converges to )|( swP  if given 

enough space to do so. The complete mathematical details 
can be found elsewhere (see Bishop, 1995; Nabney, 2004). 
It may be noted, however, that the pure Metropolis-
Hastings algorithm (Hastings, 1970) is found to be very 

slow because the method makes no use of gradient 
information. Contrary to this, the HMC based algorithm for 
sampling from the target distribution makes use of gradient 
information. The following steps are needed once a step 

size θ  and the number of iterations L   have been decided 

upon: (i) randomly choose a direction τ : τ  can be either -

1 or +1 with probability 0.5 to simulate a forward or 
backward step in time;  (ii) following the theory of 
Hamiltonian statistical mechanics, the transition probability 
matrix should satisfy microscopic reversibility, which 

means that probability of these two transitions from jq  to 

iq  or from iq  to jq  be same at all times and each pairs of 

points maintains a mutual equilibrium (iii) iterate, starting 

with the current state )]0(),0([(],[ pqpq =  of energy H , 

where p  is a momentum term which is randomly 

evaluated at each step; and (iv) let algorithm be applied L  

times with a step size of θ  resulting in the candidate state, 

],[ **
pw with energy 

*
H .The candidate state is accepted 

with usual Metropolis probability of 

acceptance, )]}(exp[,1min{ *
HH −− (Bishop, 1995). If the 

candidate state is rejected then the new state will be the old 
state. These steps, in essence, describe how the sampling is 
done from a posterior distribution of network parameters so 
that the summation of equation 6 can be accomplished and 

the posterior distribution can be found, thus allowing the 
optimization of the network. The main idea of the 

algorithm is that the acceptance probability is evaluated at 
each step so as to produce the necessary number of 
realizations . Thus we estimate the posterior distributions 
which are not easily tractable analytically. The desired 

statistics can easily be estimated from the same 
realizations. 
 

Examples 

 

Construction of the synthetic data 
 
Before these methods can be used on actual well log data, 

we test the efficiency of the proposed techniques on the 
following three theoretical models: (i) Ar(1)/ stochastic/ 
random walk model, (ii) logistic,  and (iii) a white noise 
process. A brief description of these models is given below: 

 

Stochastic model / auto-regressive (1) model  
 

A first order autoregressive Ar (1) model/random walk 

model (Maiti and Tiwari 2009) takes the 

form
ttt AXX ε+= −1
; where Nt ....,.........3,2,1=  

denotes the discrete spatial increment.  Here A  is a 

maximum-likelihood estimator and another parameter tε  

denotes a purely random process (an uncorrelated normal 
distribution uniformly distributed in the interval between 0 
and 1). An autocorrelation coefficient describes the degree 

of signal correlation in the noise and is calculated from the 

data. It has a value ranging from 0 to 1. tX  depends partly 

on 1−tX  and partly on the random distribution tε . The Ar 

(1) / stochastic model exhibit a tendency to cluster towards 
low values (Maiti and Tiwari 2009).  

Logistic model 
 
A complex system can be represented by the “logistic” 
model equation which is of the form of 

)1(1 ttt
XBXX −=+

; Where tX  and 1+tX  are the 

present and future values of generating process with 

relative values ranging from 0 to 1, and B  is a coefficient 
(control parameter) between 0 and 4. Theoretically, 
complexity reaches the maximum for a B value ~4.   
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Random white noise model 
 
Random white noise is uncorrelated and has zero mean. 
Such a process is unpredictable due to its uncorrelated 
nature. A random 3-D phase plot shows that the values 

scatter equally in all directions (Maiti and Tiwari 2009). 

 

Network model for synthetic data 

 
We train the MLP network coupled with HMC using the 
data of the three basic models as described above, their 
power spectra and ACF coefficients. In all, 768 data 
sequences were used for network training. A composite 

time series of three models (Figure 1a-b) is used to test the 
trained network. Spectral discriminates are used to train the 
network, and the resulting network output for presence or 
absence of a nonlinear sequence is indicated in the form of 
probabilistic index (Maiti and Tiwari 2009). One can see 
that the trained network is able to discern individual signal 
from the test model sequence with 74% accuracy (Figures 
1c-d). Uncertainty analysis of the predicted output is 

performed by calculating standard deviation (STD) from 
the posterior covariance matrix of the network output. The 
discrimination results are presented in 3 gray bands, with 
black representing 1; and white, 0 . We have experimented 
with different network parameters to estimate the 
uncertainty of the network output (Maiti and Tiwari 2009). 
The average uncertainty of the predictions is ~0.14 at 
network output, with a 90% confidence interval. We see 

that the uncertainty of the network prediction depends on 
the hyperparameter µ (see Maiti and Tiwari 2009). It is 

interesting that classification results for the composite 

signals (comprising non-linear, stochastic and random 
sequences) by the present method are very good.  Thus, the 
proposed method could be used as an alternative way to 
discriminate among complex signals. 

 

Table 1: Significant limits to generate forward model 

for neural network learning  

Network model for field data 

After describing the successful test of the proposed 
algorithm on complex synthetic series, we will demonstrate 
the method on the following real KTB, main-bore-hole 
records: density (RHOB), neutron porosity (NPHI), gamma 

ray intensity (SGR), seismic P-wave transit travel time 
(DTCO) and electrical resistivity (LLD) for discriminating 
among three litho-facies in a complex metamorphic region 
of central Europe.  

 

Bayesian Network model for the KTB borehole data  

We parameterized five sets of log response (considering the 
well log-response of RHOB, NPHI, SGR, DTCO and LLD 

to the rock compositions, and the significant parameter 
limit as described above and in Table 1 and generated 
corresponding representative input/output pairs. A total of 
1408 input/target pairs were considered for the present 
analysis. The total available data sets were randomly 
partitioned for training (50%), for validations (25%) and 
for testing (25%).  
 

 

 

 

 

 

 

 

Rock type Density 
RHOB[g/cc] 

Neutron 
porosity 
NPHI[%

] 

Gamma ray 
intensity 

SGR[A.P.I] 

P-wave transit 
travel time 

DTCO(

ms /µ )  

Ln(Resistivity
) 

LLD[ohm-m] 
 

Desired output 
[binary code] 

PG 2.65 - 2.85 5 - 15 70 - 130 165-200 3-9 100 

MB 2.75 - 3.10 5 - 20 0 - 50 143-196 4-10 010 

HS 2.60 - 2.90 1 - 15 40 – 90&120-190 174-220 5-9 001 
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Figure 2: (a) Maximum a posteriori geological section (MAPGS) 

based on Bayesian neural networks with hybrid Monte Carlo 

simulations of pilot borehole (KTB-VB) from depth 28-4000m. (b) 

Same for main borehole (KTB-HB) from depth 3000-7000m.  

 
We mention here, however, that there is no rule of thumb 
for such a partitioning of the data. Hence the choice of 

percentage of data divided among training, validation and 
testing is not unique, but rather it is data and problem 
dependent. We further re-checked different target units in 
each independent subset carefully and reshuffled the total 
samples (1408 input and output pairs) and partitioned them 
randomly to each independent subset. After successful 

completion of the training and the test for robustness of the 
proposed method, the trained network was used for 
discrimination among lithofacies in the pilot bore hole 
(KTB-VB) for a depth interval of 28-4000m and in the 
main hole (KTB-HB) for a depth interval of 3000-7000m. 

The pilot borehole and main hole data were sampled at a 
common interval of 0.1524m (6 inches). The total depth of 
the main hole and the pilot hole are 9101m and 4000m 
respectively. It is important to mention here that the well 
logs used here are continuous and uninterrupted throughout 
the depth intervals used.In Figure 2(a-b), the maximum a 
posteriori geological section (MAPGS) corresponds to the 
class with maximum a posteriori probability: in the ideal 

case, if the lithofacies of a particular class exists,  the 
output value of the node in the last layer is 1 or very close 
to 1, and if not, it is 0 or very close to 0. The (MAPGS) is 
consistent with main borehole lithosections (Figure 2, Maiti 
et al., 2007). In addition to this, the proposed method also 
detects some finer structures over a couple depth intervals 
within the major successions of paragneiss (PG), 
Metabasites(MB), and  heterogeneous series(HS).  These 

finer structures appear to be geologically significant (Maiti 
et al., 2007). These additional findings of HS in between 
the PG and MB were ambiguous in previous studies 
because of the strong superposition of well log signals 
produced by the varying composition and structure of the 
crystalline rocks. For example, at depth intervals of 500-
600m, 1010-1040m,1100-1120m,1510-1550m,2500-2520m 
and 3400-3500m for the  pilot hole (KTB-VB) and 3210-

3260m, 4000-4010m, 4100-4150m, 4800-4810m, 5300-
5310m, 5500-5520m, 6000-6050m, 6530-6550m, 6750-
6800m, 6900-6960m for the main hole (KTB-HB), the HS 
litho-type is detected (Figure 2a-b). In the main hole, the 
change of MB to HS at depth 3413.15m is also confirmed. 
It is geologically significant in view of the extension of the 
Franconian Lineament which cuts the KTB main hole 
(KTB-HB) at that particular depth. The present analysis 
shows clear demarcation of the three types of lithofacies. 

Conclusions 

 
We have developed a new HMC-based Bayesian neural 
network method to discriminate among geophysical signals 
emanating from the complex geological sources. The 

important advantage of this HMC-based Bayesian neural 
network approach is that it can discriminate accurately 
complex signals even in the presence of different kinds of 
noises that are encountered in many geological situations. 
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Our KTB data analysis using the proposed HMC-based 
Bayesian neural network method suggests that the method 
is able to accurately classify litho species boundaries. 
Further, in addition to agreeing well with earlier findings 
our model result also suggests presence of some finer bed 

boundaries that were ambiguously missing in the previous 
studies. Presence of finer structures seems to have 
geological significance for understanding the crustal 
inhomogeneity and structural discontinuities within the 
central European crust. Thus our main contribution has 
been to demonstrate how the new HMC-based Bayesian 
neural network method could be used to generate 
lithofacies boundaries from the well log signals decoded 

from the borehole. The method could be further exploited 
for modeling different kinds of geological and geophysical 
well log signals. 
  

Acknowledgements 

 
We are grateful to Dr V.P. Dimri, Director, NGRI and Prof. 
Archana Bhattacharyya, Director, Indian Institute of 
Geomagnetism (IIG), Navi-Mumbai for their support and 
kind permission to publish this work. Saumen Maiti (SM) 
expresses sincere thanks to the Department of Science and 
Technology (DST), Govt. of India for support of the 
research work. We are also thankful to Prof. Hans-Joachim 

Kumpel for providing the KTB borehole data. 
 

References 

 
Bishop, C. M., 1995, Neural networks for pattern 
recognition: Oxford University Press. 
 
Delfiner, P., O. Peyret, and O.Serra, 1987, Automatic 
determination of lithology from well logs:SPE Formation 

Evaluation,2,303-310 
 
Duane, S., A.D. Kennedy, B.Pendleton, and D. Roweth, 
1987, Hybrid Monte Carlo: Physics Letters B, 195, 216-
222. 
 
Khan, M.S., and P. Coulibaly, 2006, Bayesian neural 
network for rainfall-runoff modeling: Water Resources 

Research, 42, W07409, doi: 10.1029/2005WR003971. 
 
Hastings, W. K., 1970, Monte Carlo sampling methods 
using Markov Chain and their applications: Biometrika, 57, 
97-109. 

Leonardi, S., and H. Kumpel, 1998, Variability of 
geophysical log data and signature of crustal 
heterogeneities at the KTB: Geophysical Journal 
International, 135, 964-974. 
 

Leonardi, S., and H. Kumpel, 1999, Fractal variability in 
super deep borehole-implications for the signature of 
crustal heterogeneities: Tectonophysics, 301, 173-181.  
  
Maiti, S., and R.K.Tiwari, 2005, An automatic method for 
detecting litholog boundary using Walsh Transform: A case 
study from KTB borehole: Computers and Geosciences, 31, 
8, 949-955. 

 
Maiti, S., R.K.Tiwari, and H.J. Kumpel, 2007, Neural 
network modeling and classification of lithofacies using 
well log data: A case study from KTB borehole site: 
Geophysical Journal International, 169, 733-746. 
 
Maiti, S., and Tiwari, R.K., 2009, Automatic 
discriminations among geophysical signals via the 

Bayesian neural networks approach, Geophysics (In press) 
 
Maiti, S., and Tiwari, R.K., 2009, A Hybrid Monte Carlo 
Method Based Artificial Neural Networks Approach for 
Rock Boundaries Identification: A Case Study from the 
KTB Bore Hole, Pure and Applied Geophysics, DOI 
10.1007/s00024-009-0533-y 
 

Nabney, I. T., 2004, Netlab Algorithms for pattern 
recognition: Springer, New York. 
 
Neal, R.M., 1996, Bayesian learning for neural networks: 
Springer-Verlag, NewYork, Inc. 
 
Rumelhart, D. E., G.E.Hinton, and R.J. Williams, 1986, 
Learning representations by back-propagating errors: 
Nature, 323, 533-536. 

 
Tarantola, A., 1987, Inverse Problem Theory: Elsevier, 
New York. 
 
Wolff, M., and J. Pelissier-Combescure, 1982, 
FACIOLOG:automatic electrofacies determination: Society 
of Petrophysicists and Well log Analysts Annual Logging 
Symposium paper FF,6-9. 

 


