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Summary 

 

The Cambay basin is one of the major onshore oil producing sedimentary basins of India, and is approximately located between 

21
0
N to 24

0
30

’
N and 71

0
30

’
E to 73

0
45

’
E in the western margin of Gujarat state.  Quantification of accurate subsurface 

temperature field is of vital importance for the better understanding of crustal/lithospheric evolution and temperature controlled  

geological processes such as maturation of hydrocarbons, mineralization, hydrothermal circulation which are of economic 

importance. The thermal structure is influenced by its geothermal parameters such as thermal conductivity, radiogenic heat 

sources and initial and boundary conditions. The mathematical equations governing the behavior of the earth are constructed by 

combining conservation laws and constitutive relationships and are solved analytically as well as numerically using the initial 

and associated boundary conditions. In this study the two dimensional heat conduction equations are solved in a stochastic 

framework incorporating randomness in thermal conductivity both numerically and analytically. The thermal conductivity is a 

very important parameter for understanding the present and past thermal regimes of sedimentary basins. The bulk thermal 

conductivity of sedimentary rocks depends mainly on three factors such as their mineralogical and fluid composition, their 

temperature and their structure. As these numerical values are not known with certainty, we have considered the thermal 

conductivity to be a random parameter.  The analytical solution to the problem is obtained using the Adomian method of 

decomposition. The two dimensional plot of the mean temperature-depth distribution shows that the mean temperature field is 

increasing with depth as expected. The plot of standard deviation, which is a measure of uncertainty in the system behavior, 

shows that it also increases with depth. Further with an increase in errors in the input, an increase in the errors in the system 

behavior is observed.  The result shows that the Curie isotherm, which is the isotherm of approximately 550
o
C, lies 

approximately at 19 km depth and the Moho temperature is found to be approximately 900
o
C with a maximum of 920

o
C at 

Tharad and a minimum of 850
o
C at Degam and the standard deviation is seen to be approximately   between 60

 o
C  to 85 

o
C.  To 

demonstrate the thermal field in sedimentary basins a Matlab based GUI has been developed. 

 

 

Introduction 

 
Estimation of the subsurface thermal structure of the crust 

is required to understand large class of geological 

problems. The subsurface thermal field is mostly obtained 

in a deterministic frame work. The thermal conductivity 

and radiogenic heat source are used to estimate the 

subsurface temperature which varies both laterally and 

vertically in complex ways. In such cases it is not possible 

to infer with certainty the subsurface temperature in a 

deterministic framework. Therefore it is essential to solve 

the problem in a stochastic framework to quantify the 

effects of uncertainties in the controlling parameters on the 

temperature field. Some studies on the effects of random 

heat sources and conductive parameters on the temperature 

distribution have been carried out by Vasseur et al (1985), 

Vasseur and Singh (1986) and Nielson (1987). 
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Quantification of any physical phenomena is done by a 

suitable mathematical formulation of a simple algebraic 

equation, an integral equation or a differential equation, 

relating to various parameters of interest. This 

mathematical model is essential to extract the fine 

properties of the physical phenomena and to study the 

characteristics of the process, which include steady state 

and the transient response. Mathematical formulation of 

any physical process involves various complex equations, 

which can be solved using different analytical and or 

numerical techniques to get the desired solutions which can 

be analyzed in terms of the physical phenomena. 

Differential equation itself contains no information related 

to any specific problem such as geometry of the media, 

nature of the conditions at boundary, initial condition etc. 

Differential equations are solved using two approaches, 

analytical and numerical methods. Most commonly used 

analytical methods are: method of separation of variables, 

integral transform method, integral balance method and 

Adomian method. Numerical methods such as the FEM 

(Finite Element Method), FDM (Finite Difference Method) 

can be used which can provide approximate but acceptable 

solutions. Analytically the heat equation has been solved 

using the Adomian approach where the solution is built 

using a series expansion method. Adomian’s method of 

decomposition (Adomian 1994) has now been generalized 

as a general analytic procedure to solve deterministic or 

stochastic, linear or nonlinear equations. It has been shown 

to be systematic, robust, and sometimes capable of 

handling large variances in the controlling parameters. In a 

recent study using this new approach the stochastic heat 

conduction equation was solved by Srivastava and Singh 

(1999), incorporating uncertainties in the thermal 

conductivity, where the solution for the temperature field 

was obtained using a series expansion method. The thermal 

conductivity was considered to be a random parameter with 

a known Gaussian colored noise correlation structure. 

Later, Srivastava (2005) extended the study to obtain the 

analytical expressions for mean heat flow and its variance. 
 

Theory 

We begin by considering the linear two-dimensional heat 
conduction equation  

yx
lyandlxA

y

T
yxK

yx

T
yxK

x
≤≤≤≤−=

∂

∂

∂

∂
+

∂

∂

∂

∂
00))),(())),((

     (1) 

where  T(x,y) is the temperature (o
C), K(x,y) is the thermal 

conductivity )/( CmW o
 which can be represented as a 

sum of a mean part and a random part, A is the radiogenic 

hear source )/( 3mWµ and  xl and 
y

l are the length 

and width of the sedimentary basin (m).  

 

A usual representation for the spatial variability in the 

thermal conductivity  assumes is 
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where K  is the mean and ),(' yxK is the fluctuation 

part. 

 

Common representations for the fluctuating part in the 

thermal conductivity is assumed to be  random with a 

Gaussian correlation structure 
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where < > denotes the expectation operator,
2

Kσ  is the 

variance in the thermal conductivity, ρ  is the correlation 

decay parameter(
2

/1 m ), or )/1( ρ is the correlation 

length scale (
2

m ), 

and 
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is the square of the distance between the coordinates 
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),( 11 yx and ),( 22 yx (
2

m ) .  Equation (1) 

becomes 
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Associated  boundary conditions are 
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In one of the boundaries i.e. at the base of the model the 

flux condition has been considered. The solution to the 

problem is obtained using the procedure of Srivastava and 

Singh (1999) with two terms in the decomposition series. 

This is not a limitation of the method, but a limitation of  

 

 

 

 

 

 

 

the information available. The inclusion of additional terms 

in the solution would require the availability of higher-

order moments in the thermal conductivity. However, it is 

known that when decomposition series converge, they do 

so very rapidly and only a few terms in the series are 

required for an accurate solution.  

 

Examples  

 

To demonstrate the methodology proposed we have 

considered the Cambay  basin region which is one of the 

major onshore oil producing sedimentary basins of India 

.The basin runs in the form of a graben in approximately 

NNW-SSE direction up to 210 45’N latitude and thereafter 

turns in the NNE – SSW direction towards the Gulf of 

Cambay.  In the north, the basin joins Kutch rift basin and 

to its south lies the Narmada rift basin.  West of the 

Cambay basin is the Saurashtra Peninsula covered by the 

Deccan traps.  The Cambay basin developed sequentially 

from north to south during northward motion of the Indian 

plate after the breakup of the Gondwanaland.  To model the 

crustal thermal structure the profile between Tharad to 

Degam portion has been used as shown in figure1. 
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Fig 1: Tectonic and Location map of Cambay basin and a  DSS profile from Tharad to Degam in the north Cambay basin 

 

The surface heat flow values measured at Mehsana, Kalol, 

Sanad, Navagam, Kathana and Cambay in the northern part 

of the Cambay basin indicate that the northern Cambay 

basin is characterized by high heat flow values from 75 – 

93 mW/m2 with an average value of 83 mW/m2 as 

compared to the normal heat flow value of approximately 

46 mW/m2 for stable continental areas.  The heat 
production is ranging from 2.1 to 2.7 )/( 3

mWµ  and the 

mean thermal conductivity is taken to be  K(x,y)around 3.0  

)/( CmW
o  and the coefficient of variability in thermal 

conductivity is considered between 0.2 to 0.4. The result 

shows that the Curie isotherm, which is the isotherm of 

approximately 550oC, is around 20km and the temperature 

at Moho  is about 900oC with a maximum of 920oC at 

Tharad and a minimum of 850oC at Degam and the 

standard deviation is approximately   between 60 oC  to 

85oC.   

 

Conclusions 

 

The analytical solution to the subsurface temperature field 

and its associated error bounds have been obtained by 

solving the steady state heat conduction equation 

incorporating Gaussian uncertainties in the thermal 

conductivity using the Adomian method of decomposition.  
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First the solution to the temperature field is built using a 

series expansion method. Closed form analytical 

expressions for mean and variance in the temperature depth 

distribution have been obtained and an automatic 

formulation has been developed in mat lab for computing 

and plotting the thermal structure. Using a sequence of mat 

lab m files a simple graphical user interface (GUI) viewer 

has been developed which allows us to give the controlling 

thermal parameters on the screen directly and it displays 

the subsurface thermal structure along with its error 

bounds. The software developed can be used to quantify the 

thermal structure for any given region. The thermal 

conductivity is assumed to be a realization of a Gaussian 

random process and the mean behavior of the temperature 

fields along with its error bounds is obtained. The 

temperature and its errors are seen to increase with depth. 

The temperature along the profile do not vary significantly 

due to homogeneity along the horizontal direction.  

 The temperatures and its associated error statistics can be 

used for a better evaluation of the thermal state of  

sedimentary basins for hydrocarbon maturation. 
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