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Summary 
 

We processed a stacked, migrated volume from a 3-D survey through our data conditioning software and created a substantially 

improved conventional trace volume which greatly reduced noise and improved continuity of reflections.  This data set allowed 

the Client to more accurately locate faults and generate locations to exploit “attic” oil. The improved data set was available for 

additional post-stack processing including volumetric curvature and spectral decomposition.   

 
 

Introduction 
 
A series of oil and gas fields have been discovered in the 
Deohal-Burdubi Area (Figure 1) form Oligocene Barail and 

Langpar Sandstone in the Assam Arakan basin, onshore NE 
India (Oil India Ltd, 2008). The post stack processing was 
carried out in a 3-D seismic survey which consists of 117 
lines of 341 traces each with a trace spacing of 25 m and a 
line spacing of 50 m for a total coverage of 50 km2.  Each 
trace consists of 1251 samples with a 4 ms sample interval 
for a total trace length of 5.0 seconds. The original data was 
very noisy and generally lacking in reflections that are 

continuous over large lateral distances. It is also possible or 
likely that such areas indicate that migration of the seismic 
data did not fully collapse the diffractions originally in the 
data.  Nevertheless, the evidence for such faults occurs 
above and below the apparently continuous reflections and 
on closely spaced parallel lines or crosslines. 
  

 

Figure 1.  Time structure map for representative horizon.   

 

Interpretation Methodology 
 
Principal Component Analysis: Prior to any curvature 
analysis and spectral decomposition, we applied our 
Principal Component Analysis (PCA) conditioning to the 

data set. Our data conditioning algorithm is essentially a 
three dimensional dip filtering routine which uses the 
multi-dimensional matrix algebra of principal component 
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analysis to determine the best fit surface at each sample of 
the volume.  Although the analysis is done in three 
dimensions, the multi-dimensional plotting becomes 
impossible to draw, so we will illustrate the process with 
two dimensional diagrams.  The process uses a small sub-

volume of the data, usually 3 lines by 3 traces by 11 
samples, around the sample being analyzed. Figure 2 shows 
a series of traces which have been transformed through a 
Hilbert Transform into the energy domain (Green Shading 
and red line).  The sub-volume is indicated by the blue 
crosses, indicating the energy values for each of the 
samples.   

 
Figure 2.  Two dimensional representations of seismic traces.  

Green shading and red line indicate traces transformed into the 

energy domain.  Blue circle indicates sample being analyzed.  Blue 

stars and dashed lines represent energy values of specific samples 

in the three dimensional sub-volume used for the principal 

component analysis. 

 
Each level of the sub-volume may be plotted as a vector in 

9+ dimensional space, where each dimension represents the 
energy value of on the traces in the sub-volume (Figure 3).  
 

 
 
Figure 3.  Vector plot of sub-volume in Figure 2.  For each dip in a 

series of dip scans, the vectors form a cluster and the “tightest” 

cluster represents the optimum surface at that sample.  The 

weighted center of that tightest cluster is projected back to the axis 

of trace being analyzed and put out as the “conditioned” data. 

  
In a perfect case, all of the vectors would be co-linear and 
the cluster represents noise.  The process is repeated for 
each dip in a series of dip scabs and the dip which produces 
the tightest cluster indicates the dip of the surface at that 
sample. As long as the seismic reflections are continuous, a 
multi-trace filter can produce good results.  However, when 
this is some kind of discontinuity in the data, a multi-trace 

filter may smooth out any such breaks (Figure 4).  To 
overcome this problem, we use a Kurahawa filter to 
produce preserve the breaks.   

 
The process described above is repeated for a sub-volume 
centered about each of the traces in the original sub-
volume.  The position which produces the tightest cluster is 
used for the sample at the center of the original sub-

volume. 
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Figure 4.  Kurahawa filter.  In the case of a break in the data, an 

analysis made at the location of the blue circle would produce an 

inferior result.  In this case, the analysis is repeated for a sub-

volume centered around each trace in primary sub-volume.  An 

analysis centered on the right hand trace (green) would produce a 

result similar to the one centered around the middle trace.  

However, an analysis centered on the left trace (red) would 

produce a superior result. 

 
Figure 5 shows a seismic line from this survey as indicated 

on the map.  Section of the left is from the original data and 
the section of the right is after conditioning.  The 
conditioned section shows substantially less random noise 
and significantly more continuity along the reflections.  
The sub-vertical brown lines indicate faults whose 
locations are poorly imaged in the original data, but are 
precisely locate on the conditioned data.  
 
 

 
 
 

 
 

Figure 5.  Seismic line indicated in Figure 4.  PCA conditioned 

data shows substantial decrease in noise and increased continuity 

of reflections; see especially areas in green circles.  The dashed 

brown lines represent faults which are poorly imaged or not visible 

on the original data.   

  
Figure 6 shows the mapped horizon at the target level.  
Autopicking is possible of the conditioned data and the 

map shows very well the track of the fault.  Such a result 
may be useful for determining reserves and additional 
locations. Figures 7 and 8 show the input and PCA 
conditioned data from a line indicated in Figure 8.  On the 
original data, the position of the fault separating Well C 
from Wells A and B is very poorly defined.  After PCA 
conditioning, the position of the fault is very clear and 
indicates that there is some updip potential between Well C 

and the fault. 
 
 
 
 
 
 



 

 
Data Conditioning, Curvature Analysis, and Spectral Decomposition  

Processing of 3-D Data 

   

 

 

 4 

 
Figure 6.  Structure map showing the line Figure 7 and 8 and the 

positions of Wells A, B, and C.  Note the well defined position of 

the fault up dip of Well C. 

   

 
Figure 7.  Line connecting two producing areas as shown in Figure 

6.  Data is from the original input survey. 

 

 
Figure 8.  Same line as Figure 7 from PCA conditioned data set.  

The trace of the fault is well defined in this display which will 

provide a better delineation of the reservoir. 

 

Curvature Analysis: After PCA processing we computed 
the curvature on the same data set. Curvature is a two 
dimensional property computed along a single azimuth of a 
surface.  To understand this, it is easiest to consider a 2-D 
profile (Figure 9). Along this profile, the dip changes 

forming different types of folding.  At each point along this 
profile, there is one and only one tangent circle.  In areas of 
concave downward (anticlinal) folding, the circles are 
below the surface and, in cases of concave upward 
(synclinal) folding, the circles are above the surface. Each 
of these circles has a radius, with tighter circles having 
smaller radii.  Curvature has two simplistic definitions:  the 
rate of change of dip and the inverse of the radius of the 

tangent circle.  By convention, we assign positive values of 
curvature to anticlinal folding and negative values of 
curvature to synclinal folding. 
 

Figure 9.  Curvature in two dimensions.  At each point along a 

profile, there is one and only one tangent circle.  As the folding 

gets tighter, the size of the tangent circle and its corresponding 

radius (R) get smaller.  Curvature (k) may simply be understood as 

the inverse of this radius, so that tight folding corresponds to 

greater curvature.  By convention, anticlinal folding corresponds to 

positive values of curvature and synclinal folding corresponds to 

negative values. 
 
In three dimensions, there are a large number of azimuths 

about to compute the curvature at any given point P (Figure 
10). For any second order Surface, there are two principal 
curvatures:  the Maximum Curvature, which represents the 
plane in which the folding is the tightest and the Minimum 
Curvature, which represents the plane in which the folding 
is the broadest. These two planes are perpendicular.  
Additional curvatures are those which are computed in the 
dip direction and in the strike direction.   
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Figure 10.  Curvature in three dimensions.  For a surface there are 

two principal curvatures:  Maximum Curvature, kmax,  which 

defines the tightest curvature and Minimum Curvature, kmin,  

Additional obvious curvatures include the curvature measured in 

the dip direction, kdio,  and the curvature measured in the strike 

direction, kstr. 

 
Two additional non-intuitive curvatures are the Most 
Positive and the Most Negative Curvatures (Figure 11).  
Maximum Curvature refers to magnitude and may be 
positive or negative.  Most Positive and Most Negative 
Curvatures are similar to Maximum Curvature, except that 

they highlight anticlines and synclines, respectively.  In the 
case of a saddle, with the folding tightest in anticlinal 
direction, Maximum Curvature will show the anticline and 
truncate the syncline.  Most Positive Curvature will show 
the anticline only.  Most Negative Curvature, however, will 
show the entire syncline.  For this reason, Most Positive 
and Most Negative Curvature highlight anticlines and 
synclines, respectively, to a greater degree than Maximum 

Curvature. Curvature is a property of a surface and 
software has been developed to compute curvature along 
gridded surfaces, such as interpretation of 3-D seismic data 
create.  However, there are sometimes problems with such 
surfaces during interpretation.   
 
 

 
Figure 11.  Most Positive/Most Negative Curvature.  Maximum 

Curvature shows the greatest magnitude of folding, regardless of 

polarity.  Most Positive Curvature highlights anticlines and Most 

Negative Curvature highlights synclines. 

  
During our PCA conditioning process, we use the sub-
volumes to compute well behaved surfaces for every 
sample in the full volume.  We then calculate curvature for 
every sample in the full volume so that we can overcome 
any problems with horizon interpretation.  In fact, it is 

easily possible to view the results along time slices. 
Figure 12 shows the Most Positive and Most Negative 
Curvatures for a time slice at 2.2 seconds within the data 
volume with lineaments identified on them.  
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Figure 12.  Most Positive Curvature (Upper) and Most Negative 

Curvature (Lower).  Blue and yellow lines represent lineaments 

which have been identified and whose orientations are shown in 

Figure 13. 

 

  
Figure 13.  Orientations of lineaments in Figure 12. 

 
As a casual inspection would indicate, the predominant 
trend on both of these displays is generally north to south 
(Figure 13).  Figure 14 shows three possible tectonic 

origins for such preferred orientations:  east-west extension, 
north-south compression, and north-northeast to south 
south-southwest left lateral wrenching. 
 

 
Figure 14.  Possible explanations for north-south trending 

lineaments.  

 

Figure 15 shows a time slice from the basement in which 
an anticlinal trend crosses the slice from east to west with 
offsets in the middle.  An interpretation of this slice 
indicates northeast-southwest left lateral wrench faulting. 
 

 
Figure 15.  Maximum Curvature, Time slice 3.188 (Basement).  

Anticlinal trend shows changes in orientation corresponding to 

northeast-southwest left lateral wrench faulting.  Trends in the 

sedimentary section (Figures 13 and 14) are consistent with this 

model. 

 
Spectral Decomposition Highlight Volumes: Spectral 
decomposition is the process of breaking down seismic 
traces into the component sine waves which may be 

summed for form the trace.   Normal processing for 
spectral decomposition produces one volume of amplitude 
response for each frequency analyzed, and variations in 
amplitude by frequency for a various area are generally 
believed to be related to stratigraphic variations.  This 
results in a large number of volumes to be interpreted.  We 
provide what we call Highlight Volumes (Figure 16) which 
summarize the information in those numerous individual 
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frequency volumes.  For each sample in the volume, we 
compute an amplitude spectrum.   
 
On this amplitude, there is some frequency (Peak 
Frequency) at which the spectrum reaches a maximum 

(Peak Amplitude).  Time or horizon slices of this maximum 
amplitude are often similar to amplitude slices from the 
original trace volume.  To locate anomalous areas, we 
subtract the average for each individual spectrum from the 
maximum.  If the result is a low number, then the spectrum 
is relatively flat.  If the result is large, the peak value for 
this sample is truly anomalous.  
 

 
Figure 16.  Highlight volumes.  This diagram represents amplitude 

spectra for four generic samples in a volume.  At each sample, 

there is a frequency (Peak Frequency) for which the spectrum 

reaches a maximum (Peak Amplitude).  To determine if this Peak 

Amplitude is anomalous or not, we subtract the average for the 

spectrum from the peak to produce the Peak Amplitude above 

Average.  Large values indicate anomalous results and small 

values indicate flat spectra. 

 
Figure 17 shows a map of Peak Amplitude Above Average 
for the horizon shown in Figure 8.  Wells A and B are 
productive, but Figure 6 indicates that they are not 

structurally controlled.  This attribute indicates that the 
production may be associated with stratigraphic features. 
 

 
Figure 17.  Peak Amplitude Above Average (PAAA).  Wells A 

and B (Figure 6) are not on structural closure, but have produced 

hydrocarbons.  PAAA shows that the production may be related to 

a stratigraphic body outlined by this attribute.   

 

Conclusion 
 
Our conditioning process is very powerful at reducing noise 
and improving continuity.  In this case, the combination of 
data quality along with presence of short segments of 
continuous data results in areas in which faults may cross 
apparently continuous reflections. With Principal 
Component Analysis (PCA) and achieved substantial 

improvement in data quality.   
 
In this case, there is a great deal of structural variability 
within the survey. Interpretation of the curvature volumes 
suggest that the area is dominated by right lateral wrench 
faulting in the basement. Within the Oligocene zone, there 
is a preferred orientation of lineaments representing subtle 
anticlines, synclines, faults, and flexures with a narrow 

lateral extend oriented in a north-south direction a more 
northeast-southwest for structures with a broader lateral 
extent. 
 
 Our spectral decomposition highlight volumes suggest that 
depositional stratigraphic trends with a north-south to 
northwest-southeast orientation may be present within that 
same zone. Spectral decomposition highlight volumes 
indicate that wells which produce in an area which is not 

structurally closed may be related to a stratigraphic body. 
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