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Summary 
   
Property estimation of thin sand-shale reservoirs using seismic response could be challenging due to limited seismic 

resolvability. A forward-modeled investigation on seismic signatures of multiple realizations of pseudo 1-D thin sand-shale 

sequences, constructed from a discrete, first order Markov chain model, reveals possible distinctions of thin sand-shale 

reservoirs with different net-to-gross and saturations in the wavelet-transform-based attribute space. We also show a numerical 

example of how to apply this technique in a real situation. First, we assume that the transition matrix or thickness distributions at 

the well location are known.  In reality, this information can be estimated from the well data. Then, we create synthetic 2-D 

spatial models describing geology away from the well, explore statistically how attributes would vary with a change of 

sand/shale ratios and apply the statistics to obtain the posterior distributions of net-to-gross at three selected locations from the 

seismic section.   

 

Introduction   
 
Seismic estimation of reservoir properties is common in 
petroleum exploration. However, detecting and estimating 
petrophysical properties of thinly layered reservoirs with 
layers below seismic resolvability can be challenging. Most 
studies of thin beds and their seismic response have 
focused on the resolution problem (e.g. Chung and Lawton, 
1995; Okaya, 1995). Lange and Almoghrabi (1988) 
introduced lithology and pore fluids in their forward 
modeling of thin layers and suggested that spectral 
parameters could help discriminate layer properties. 
However, the study was limited to a layer bounded by two 
different materials with fixed properties.    
 
Most stratigraphic sequences in nature reflect non-random 
stacking sedimentary patterns. Depending on depositional 
environments, the main characteristics of such patterns 
include lateral extents, vertical arrangements of lithologies, 
layer thickness distributions, etc (Harms and Tackenberg, 
1972). Two stacks of sand-shale layers with similar average 
properties can yield different seismic response if layer 
arrangements are different (e.g. lamination, finingupwards) 
(e.g. Khattri and Gir, 1976; Takahashi, 2000; Hart, 2008). 
Markov chains have been used as a tool to simulate bedded 

sequence to capture these preferred directionality and 
asymmetric facies associations signaling depositional 
process (e.g. Krumbien, 1969; Harbaugh and Bonham-
Carter, 1970; Schwarzacher, 1975; Xu and MacCarthy, 
1996; Parks et al., 2000). Velzeboer (1981) modeled 
sequences by a first-order Markov chain with distributions 
of physical properties and theoretically showed possible 
estimation of sand-shale ratios from power spectrum of 
reflected response. Sinvhal and Sinvhal (1992) constructed 
transition matrices from well logs using firstorder Markov 
chains to simulate pseudologs. Realizations of synthetic 
seismograms were created and used in statistical studies for 
lithology discrimination.    
 
The main focus of this paper is to study seismic signatures 
of multiple realizations of thin sand-shale sequences. A 
sedimentary column is generated in two steps: simulating 
the arrangements of lithology by running a Markov chain 
and assigning physical properties corresponding to each 
layer from rock-physics relations. Layer properties 
assigned to the sequences come from established 
rockphysics binary-mixture models. Forward computation 
of the seismic response of the sequences is then used to 
extract statistical attributes and relate them to the spatial 
patterns and properties of thin sand-shale reservoirs. 
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Markov Chain Models in Stratigraphic Sequences 

 
In stratigraphic analysis, a column of sediments can be 
described as a spatial arrangement of a finite number of 
discrete states (i.e. lithology). Markov chains provide a 
mathematical tool utilizing concepts of conditional 
probabilities to describe the dependency of the current state 
(i.e. lithology) on the previous states. If the transition from 
one state to the next depends only on the immediately 
preceding state, the chain is said to be first-order (Harbaugh 
and Bonham-Carter, 1970; Sinvhal and Khattri, 1983). 
Transition probability values for every state pair are 
tabulated into a transition matrix, which is a common 
method of representing a Markov-chain model (Parks et al, 
2000). An element pij (at the i

th row and j
th column) 

represents the probability of a transition from state i to state 
j, or the probability of going to state j, given that i is the 
current state. In a stratigraphic study, the transition matrix 
is usually obtained from real geological observations and 
can be constructed in two common ways: counting states 
using a fixed sampling interval, or counting states only 
when a transition occurs (an embedded form). For the 
former approach, the lithologic state is determined and 
considered only at discrete points equally spaced along a 
stratigraphic column. This allows successive points to have 
similar lithology, meaning the diagonal element (i.e. 
probability that a state has a transition to itself) can be 
nonzero (Krumbein and Dacey, 1969). In practice, selecting 
a proper sampling interval for this method can be 
problematic. Choosing an interval too small relative to the 
overall average bed thickness can increase the counts of 
transitions of a state to itself. Consequently, the diagonal 
elements become very large, and probabilities of the state 
transiting into the others become unreasonably small. In 
contrast, using too large a sampling interval can miss very 
fine-layered characteristics of the sequences (Sinvhal and 
Sinvhal, 1992). Krumbein and Dacey (1969) observed that 
the lithologic state of a sequence simulated by these kind of 
chains often yields thicknesses that are geometrically 
distributed.    
 
In our simulation, we discretize the lithology into 4 states 
representing a gradual increase in shaliness. Following the 
method of fixed sampling by using a step size of 0.5 m, we 
create 4x4 transition matrices whose states are sand, shaly 
sand, sandy shale, and shale. Basic geological patterns such 
as aggrading, fining upwards, and coarsening upwards 
sequences can be simulated by matrices with appropriate 

off-diagonal patterns as shown in the examples in Figure 1. 
In contrast, in an embedded-form transition matrix, all 
diagonal elements are zero, since transitions are considered 
only when lithologic states change. In this case, thickness 
distributions are extracted directly from geological 
observations (Figure 2). 
 
Rock physics relations for sand-shale mixtures 

 
A set of rock-physics relations used in our simulations 
includes the Yin-Marion mixing model (Marion et al., 
1992), the soft sand model (Avseth et al., 2005), and 
Gassmann’s fluid substitution equation (Gassmann, 1951). 
Marion et al. (1992) introduced a dispersed-mixing model 
for bimodal mixtures, in which the two end-members are 
particles of two different sizes. In this case, we consider 
sand-shale mixtures where sand grains are mixed with clay 
particles. The model then describes the topology of the 
mixing and relations between volume fraction of clay and 
porosity. For clay fraction less than the sand porosity, clay 
starts filling the sand pore space. Sand grains provide the 
load-bearing matrix of the mixture. At this stage, porosity 
decreases because clay particles replace some portions of 
the original sand pore space. When the clay content is 
greater than the sand porosity, sand grains are displaced 
and disconnected. The transition from grain-supported to 
clay-supported sediments occurs. At this stage, porosity 
increases linearly with increasing clay fraction because the 
situation is simply equivalent to substituting voidless sand 
grains with a porous chunk of clay (Yin, 1992). Thus, the 
plot of fraction of clay versus porosity shows a V-shape 
pattern (Figure 3). 
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We assign mean clay fractions of 0.1, 0.3, 0.6 and 0.9 to the 
sand, shaly-sand, sandy-shale and shale states respectively. 
The corresponding porosity values are determined from the 
Yin-Marion model. Mean velocity is obtained from the soft 
sand model which uses the lower Hashin-Shtrikman bound 
to construct velocity-porosity trends for sand mixing with 
varying clay content (Avseth et al., 2005). Density is a 
weighted average of density of each component in the layer 
including pore fluids. We introduce uncertainties by 
assuming each lithology state having a distribution of 
velocities with a mean equal to the calculated velocities and 
standard deviations of 0.1–0.2 km/s.   

 
 
Two main scenarios are explored. First, to investigate effect 
of net-to-gross, we study a set of aggrading-type transition 
matrices with same water saturation (Sw=0.1 for sand 
layers and Sw=1 for the others) but with different limiting 
distributions (i.e. varying sand fractions). For this scenario, 
we run simulations for velocity distributions with standard 
deviations of 0.1 and 0.2 km/s. Second, to study the effect 
of saturation, we focus on sequences generated from a 
similar transition matrix but with varying saturation values. 
We use Gassmann’s equation to substitute mixtures of 
water and oil with the desired saturations into the sand 
layers in the sequences. All other lithologies have Sw equal 
to 1. Full waveform, normally-incident, reflected 
seismograms (Figure 4) are simulated using the Kennett 
algorithm (Kennett, 1983) with a 30-Hz Ricker wavelet.  
 
Wavelet–transform based analysis  

 
Wavelet transform decomposes a signal into a set of scaled 
and translated versions of a selected wavelet function. The 
transform has been used, e.g, to study fractal behavior of 
seismic data and well logs to characterize lithofacies 
(Álvarez et al., 2003; López and Aldana, 2007). Using well 
logs, López and Aldana (2007) showed a possible relation 
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of lithofacies and parameters including fractal dimension, 
intercept and slope obtained from linear fits to plots of 
logvariance of wavelet-transform coefficients versus scale. 
Using a complex Gaussian wavelet, we wavelet transform 
the simulated seismograms yielding transform coefficients  
at various scales. We calculate variance of the modulus of 
these coefficients for every scale and make a log-log 
(base2) plot of the variance versus scale (Figure 5). Then, 
we extract the slope and intercept of a linear fit as statistical 
attributes for each realization.  
 

  
 
Results 

 
Figure 6 shows slope versus intercept from wavelet 
transforms of seismic responses of sequences from 6 
different transition matrices of the form. shown in Table 1. 
However, their limiting distribution (π) are different (i.e. 
sand proportion, πsand, varies from 0.32 to 0.48). In all 
sequences, all sand layers have water saturation (Sw) of 0.1 
while other lithology states have Sw of 1. Two plots 
correspond to results from simulations using two standard  
deviations (σv= 0.1 and 0.2 km/s) for velocity distributions. 
In both cases the clouds of points move down toward the 
lower left when πsand increases as the transition matrices 

change. However, for a larger σv (e.g. σv= 0.2 km/s), points 
corresponding to different πsand vare less spread out. The 
probability distributions of slope and intercept are plotted 
in Figure 7. Both slope and intercept distributions move 
toward the left as πsand increases. Figure 8 illustrates 
changes in slope and intercept as water saturations in the 
sand layers vary (Sw=0.1, 0.5, and 1). All three transition 
matrices have the same π : [0.45 0.05 0.05 0.45]. Data 
points, especially those corresponding to Sw=1, are 
gradually separated out as we move from the leftmost to the 
rightmost plots, due to changes in intercept (Figure 9). 
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Discussion 

   
The layer thickness used in our simulations have 
wavelength to thickness ratio of about 100. Seismic waves 
cannot distinguish the boundaries of these thin layers 
because of their band-limited characteristics. Hence, 
interpretations of these sub-resolution layers can only be 
based on statistical attributes of the seismograms. In the 
present study, synthetic seismograms of thin sand-shale 

sequences are investigated by extracting slope and intercept 
from a linear fit to the log-log plot of variance of wavelet 
coefficient modulus versus scale. 
 
We see a decrease in both slopes and intercepts when the 
percent of sand in the total sequence (πsand) increases for 
the selected form of transition matrices. For a larger 
standard deviation (σv ) used in velocity distributions, we 
see slopes and intercepts for different πsand are less spread 
out. One reason for this could be using larger σv would 
result in larger overlaps in velocities drawn for each state. 
Thus, even when πsand increases (i.e. more sand layers in 
the sequences), there is not much change in the overall 
velocities drawn for each sequence because all four 
lithology states would yield close values of velocities. 
Larger overlaps in the slope-intercept attributes would also 
result in larger uncertainties in property estimations. 
 
In some cases, slope and intercept of sequences obtained 
from the same transition matrix increase with increasing 
water saturation. It can be seen that different transition 
matrices can lead to different behavior in the slope 
intercept space, even when they have the same limiting 
distribution. The different behavior of the three plots in 
Figure 8 possibly comes from blockier nature of the 
sequences generated from the transition matrix in the 
rightmost plot compared to the left ones. This blocky 
characteristic is expected since the matrix has two large 
probabilities in the main diagonal (pss = pshsh = 0.85). Thus, 
spatial statistics play a critical role in seismic signatures of 
sub-resolution systems. 
 
This study does not focus on investigating all possible 
transition matrix configurations; however, the study can be 
applied to the problem of thin reservoir characterization. 
Assuming that the stratigraphy in the explored area 
demonstrates a lateral continuation within conformable 
sequences, inferred transition matrix from a calibration well 
could be used to explore statistically how the seismic 
attributes (in this case, slope and intercept attributes) would 
change with varying sand/shale ratios and saturations. 
These statistics of the attributes can then be applied to 
observations away from the well to help characterize the 
area and estimate the uncertainties. We show a numerical 
example of this application in the next section.   
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Net-to-gross estimation using Bayesian framework 

 
We set up a numerical example by first assuming a known 
transition matrix estimated at the well location. We use the 
embedded-form transition matrix with 2 lithologic states 
representing sand and shale and assume the thickness 
distribution of both lithologic states to be exponentially 
distributed with average thickness of 0.3 and 0.5m 
respectively. These transition matrices and thickness 
distributions are used to generate 1-D vertical sequences at 
the well location.  Then, we create multiple realizations of 
2-D spatial models describing geology away from the well 
location (i.e. sand layers are thinning linearly starting from 
the well location into an area away from the well) (Figure 
10). We then explore statistically how attributes vary with 
changes in sand/shale ratios as shown in Figure 11. These 
statistics will then be applied to a synthetic seismic section 
for estimating net-to-gross of the area away from the well.    
 
We estimate posterior distributions of net-to-gross at three 
selected locations from the seismic section. Posterior 
distributions of net-to-gross given attributes can be 
obtained using Bayes’ formula (Equation 1):    

 
where NG is net-to-gross, A represents attributes, which are 
slope and intercept in this case, P(NG) is the prior  
probability, P( A | NG)  is the likelihood function, and 
P(NG | A)  is the posterior probability. In this example, we 
use a simple geological model (i.e. thinning of sand layers)  
to create many realizations of 2-D rock sections. From 
these realizations, we can then estimate P(NG) or the prior  
probability of net-to-gross and use it together with the 
likelihood function to obtain the posterior distribution of 
net-to-gross at three locations as shown in Figure 12. The 
posterior distribution captures the true value as well as the 
uncertainty of the interpretation. 
 
Conclusions 

 
An investigation of synthetic seismograms from thin 
subresolution sand-shale reservoirs is performed. The 
thinlayer sequences are generated from a set of transition 
matrices representing aggrading clastic sequences. 
Wavelet-transform based attributes (slope and intercept in 
variance-scale plot) are extracted. For the selected form of 
transition matrices with the same water saturation, an 

increase in percent of sand (net-to-gross) results in a 
decrease in both slope and intercept values. For the same 
transition matrix, an increase in water saturation may result 
in an increase in both slope and intercept. The present study 
also shows that not all transition matrices with a similar 
limiting distribution give the same trends. We show a 
numerical example of how the wavelet-transform attributes 
can be used to estimate properties of thin sand-shale 
reservoirs away from the well. Using Monte-Carlo 
simulations and Bayes’ formula, posterior distributions of 
net-to-gross for the seismic section can be obtained. Prior 
geological knowledge about the area can help reduce 
uncertainty. Further investigation of other attributes will 
also help us better characterize properties and patterns in 
thin sand-shale reservoirs. 
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