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Summary 
 

Spatial finite-difference (FD) stencils designed in the space domain are usually employed in wave equation modeling. In this 

paper, we adopt a spatial FD stencil which is devised in the time-space domain based on a dispersion relation to improve the 

accuracy of FD modeling for 3D acoustic wave equation. In addition, we employ a new hybrid absorbing boundary condition 

(ABC) to eliminate edge reflection due to finite computational domain. Dispersion analysis and modeling results demonstrate 

that the time-space domain dispersion-relation-based spatial FD stencils can indeed improve the modeling accuracy. The 

modeling accuracy can be improved further by using a truncated FD method. The new hybrid ABC can effectively absorb 

boundaries reflections. The modeling scheme presented in this paper is more accurate and efficient than the conventional one 

and can be used routinely.  

 

 

Introduction 
 
The finite-difference (FD) method is an important method 
for the numerical solution of partial differential equations 
and has been widely utilized in seismic modeling and 
migration (e.g., Kelly et. al, 1976; Dablain, 1986; Liu and 
Sen, 2009a). A high-order spatial FD is a common 
approach to increase modeling accuracy (e.g., Dablain, 
1986; Fornberg, 1987; Etgen and O’Brien, 2007). A low-

order FD algorithm uses a shorter operator but needs more 
grid points for discretization. A high-order FD algorithm 
uses a longer operator but needs fewer grid points. Since a 
conventional explicit high-order temporal FD is usually 
unstable in the wave equation modeling, spatial derivatives 
are used to replace high-order temporal derivatives (e.g., 
Dablain, 1986) to increase the accuracy of temporal 
derivatives with additional computational cost.  
 
Generally, most FD methods determine the FD stencils for 
spatial derivatives only in the space domain. However, the 
seismic wave propagation calculation is done both in space 

and time domains. To improve the accuracy of 
conventional FD methods, a new time-space domain FD 
method was proposed to derive the spatial FD coefficients 
in the joint time-space domain (Finkelstein and Kastner, 

2007). The key idea of the method is that the dispersion 
relation is completely satisfied at designated frequencies 
and thus the spatial FD coefficients are frequency 
dependent. This method was developed further for 1D, 2D 
and 3D acoustic wave modeling using a plane wave theory 
and the Taylor series expansion (Liu and Sen, 2007b). 
These new spatial FD coefficients, dependent on the 
Courant number and space point number, are frequency 
independent though they lead to a frequency dependent 

numerical solution. In this paper, we report on the 
numerical results in 3D using FD that replaces the 
conventional 3D spatial FD coefficients with these new 
coefficients to improve the modeling accuracy without 
increasing the calculation amount. A truncated FD method 
is also used to enhance the modeling accuracy further. A 
hybrid absorbing boundary condition (ABC) is also 
developed for 3D acoustic modeling. 
 

Conventional finite-difference scheme for the 3D 

acoustic wave equation 
 

We start with the 3D acoustic wave equation given by 
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Where,  ( , , , )p p x y z t=  is a scalar wave field, and  v  is 

velocity.  
 
The following 2nd-order FD is usually used for the time 
derivatives, 
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τ  is time step, h  is grid size. Generally, the modeling 

accuracy is improved by high-order FD on the space 
derivatives given by 
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A Taylor series expansion is generally used to determine 
the FD coefficients (Fornberg, 1987; Dablain, 1986). The 
FD coefficients in Equations (4a), (4b) and (4c) are as 
follows (Liu and Sen, 2009a) 
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It can be proved that when a 2M-order FD space stencil and 
a 2nd-order FD time stencil are used to solve the 3D 
acoustic wave equation, numerical modeling has 2nd-order 
accuracy. It is noteworthy that increasing M may help 
reduce the magnitude of the conventional FD error without 
increasing the accuracy order.  

 

Time-space domain dispersion-relation-based finite-

difference scheme for the 3D acoustic wave equation 
 
For the time-space domain dispersion-relation-based FD 

scheme, spatial FD coefficients can be derived by using the 
following steps (Liu and Sen, 2009b). First, derive 
dispersion relation of FD modeling by using plane wave 
theory and Equations (1)-(4). Second, apply the Taylor 
series expansion for trigonometric functions in the 

dispersion relation equation. Then, compare coefficients of 
power series and obtain the following equations  
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cos cos cos sin sin
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where, /r v hτ= , θ  is the plane wave propagation angle 

measured from the horizontal plane perpendicular to z axis, 

φ  is the azimuth of the plane wave. Note that these 

equations indicate that the coefficients 
m

a  are a function of 

θ  and φ . We solve Equation (6) to obtain 
m

a  by using an 

optimal direction with 0θ =  and π /8φ = (Liu and Sen, 

2009b), which makes FD modeling attain the highest 
(2M)th-order accuracy along 48 directions.  
 

Absorbing boundary condition 
 
Here, we adopt the new hybrid scheme developed by Liu 

and Sen (2009c) to absorb reflections from the model 
boundaries in numerical solutions of wave equations 
(WEs). This scheme divides the computational domain into 
boundary, transition and inner areas. The wavefields within 
the inner and the boundary areas are computed by the WE 
and the one-way wave equation (OWWE) respectively. The 
wavefields within the transition area are determined by a 
weighted combination of the wavefields computed by WE 
and the OWWE to obtain a smooth variation from the inner 
area to the boundary via the transition zone.  
 
We develop this hybrid ABC for 3D acoustic wave 

modeling. For 3D modeling, boundaries include six sides, 
twelve edges and eight corners. Second-order OWWEs are 
adopted for these sides, and first-order OWWEs for these 
edges and corners (Clayton and Engquist, 1977). Ten grid 
points are used to define the transition area to absorb 
boundary reflections. 
 

Dispersion analysis 
 
The dispersion of FD for 3D modeling is described by the 
following expression (Liu and Sen, 2009b), 
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Where, k  is the wavenumber. If δ  equals 1, there is no 

dispersion. If δ  is far from 1, a large dispersion will occur. 

Since kh  is equal to π  at the Nyquist frequency, when 

calculating δ , kh  only ranges from 0 to π . Figure 1 

illustrates the variation of dispersion parameter ( , )δ φ θ  

with kh  along nine directions, which demonstrates that the 

accuracy of the time-space method is greater than that of 
the conventional method. 
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(a) Conventional method 
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(b) Time-space method 

Figure 1: Plot of dispersion curves of the conventional and the 

time-space FD methods for 3D acoustic wave equation modeling. 

M = 10, v = 3000m/s, τ = 0.001s, h = 10m. 

 

Numerical modeling examples 
 
First, both the conventional and the time-space FD methods 
are used to simulate 3D acoustic wave propagation in a 
homogeneous acoustic medium under the same 
discretization. The model and simulation parameters are 

listed in the caption of Figure 2. Computed snapshots 
respectively by the conventional and the time-space FD 

methods are shown in Figures 2(a) and 2(b). Comparing 
these two figures, we can see that the time-space method 
maintains the waveform better than the conventional 
method and thus has greater precision. 
 
To improve the modeling accuracy further, we introduce 

the truncated FD method into the time-space FD method. It 
is known that with the increase of the number of grid points 
involved in FD discretization, the accuracy increases but 
the computational cost also increases. Liu and Sen (2009d) 
found that there exist some very small coefficients for high-
order FD coefficients and with the increase of order the 
number of these small coefficients increases but their 
values decrease sharply. They also demonstrated that 
omitting these small coefficients can maintain 
approximately the same level of accuracy of FD but reduce 
computational cost significantly. Figure 2(c) shows 
snapshots by the truncated time-space method, it follows 

that the dispersion decreases further compared with Figure 
2(b).  
 
Next, we adopt the truncated time-space FD method to 
perform numerical modeling. Figure 3 displays the 
seismograms computed for a horizontally layered acoustic 
model with the Clayton-Engquist ABC (Clayton and 
Engquist, 1977) and the new hybrid ABC. The model and 
simulation parameters are given in the figure caption. The 
figure suggests that the boundary reflections are still strong 
compared with the reflections from the true reflectors for 

the Clayton-Engquist ABC. The new hybrid ABC achieves 
nearly perfect absorption. 
 

Conclusions 
 
We have developed a time-space domain dispersion-
relation-based FD scheme combined with the truncated FD 
method and the hybrid ABC for 3D acoustic wave equation 
modeling. Dispersion analysis and numerical modeling 
results demonstrate that this scheme has greater accuracy 
and can effectively suppress dispersion and boundary 

reflections. 
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(a) Conventional method 

 
(b) Time-space method 

 
(c) Truncated time-space method 

Figure 2: Snapshots computed by finite-difference modeling for a 

3D homogeneous acoustic model respectively with conventional, 

time-space and truncated time-space FD methods. Each figure 

includes 2 panels with 2 snapshots at 50ms and 150ms from left to 

right. The model velocity is 3000m/s, grid size is 10m×10m×10m, 

grid dimensions are 100×100×100, grid point coordinates range 

from (0,0,0) to (990m,990m,990m), time step is 1ms, M=10. The 

same discretization is involved in all the three methods, but their 

spatial FD coefficients are different. A source pulse of 50Hz sine 

function with one period length is located at the center of the 

model. The free surface condition and ABC are not included here. 

Top, front and right surfaces of snapshots are recorded at z=0m, 

y=500m and x=990m respectively. 

 
(a) Snapshots at t=500ms by the Clayton-Engquist ABC (left) and 

the hybrid ABC (right) 

 
(b) Snapshots at t=700ms by the Clayton-Engquist ABC (left) and 

the hybrid ABC (right) 

 
(c) Snapshots at t=1000ms by the Clayton-Engquist ABC (left) and 

the hybrid ABC (right) 
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(d) Seismograms with the Clayton-Engquist ABC 
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(e) Seismograms with the hybrid ABC 

Figure 3: Snapshots and seismograms computed by truncated time-

space FD modeling for 3D horizontally layered acoustic model 

respectively with the Clayton-Engquist ABC and the hybrid ABC. 

Each figure of seismograms includes 3 receiver lines. The model 

has 6 layers, whose velocities are velocity are 2500m/s, 3000m/s, 

3500m/s, 3000m/s, 3600m/s and 4000m/s from shallow to deep, 5 

interfaces depth are 300m, 500m, 800m, 1200m and 1400m. Grid 

size is 10m×10m×10m, grid dimensions are 200×200×200, grid 

coordinates range from (0m,0m,0m) to (1990m,1990m,1990m), 

time step is 1ms. M=10. A source pulse of 20Hz sine function with 

one period length is located (990m, 990m, 100m). Receivers are 

located on the surface, and 3 receiver lines shown in this figure are 

located at y=990m, 1490m and 1990m from left to right. Trace no. 

of seismogram for each receiver line ranges from 1 to 200. Traces 

whose no. varies from 11 to 190 are shown since 10 grids of width 

are used for the hybrid ABC. The free surface condition is included 

here. Top, front and right surfaces of snapshots are recorded at 

z=0m, y=1000m and x=1990m respectively. 
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