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Summary  
 

In the present work, I have modeled the P-SV wave propagation in 2D homogeneous and isotropic fullspace and solid half-space 

using second-order accurate velocity-stress finite difference method (Virieux, 1986). The perfectly matched layer (PML) 

absorbing boundary conditions (Chew and Liu, 1996) are applied at edges of the computational domain in order to minimize the 

edge reflections. Stress image method (Graves, 1996) is used to represent the planar freesurface boundary of the half-space. 

Numerical examples are presented which show excellent absorption of edge reflections with PML boundary conditions. 
 

Introduction  
 

Finite difference methods are widely used for modeling 
wave propagation in elastic media. But the finiteness of the 
computational domain due to memory limitations creates 
artificial boundaries resulting in artifacts in the form of 
edge reflections. This often results in masking of the true 
events. There are absorbing boundary conditions based on 
paraxial approximations (Clayton and Engquist, 1977) 
which are computationally efficient, however they fail 
when the incidence angle is large. Moreover the edge 

reflections originating due to interaction of surface waves 
with artificial edges are poorly suppressed by the most of 
the absorbing boundary conditions. On the other hand, the 
perfectly matched layer (PML) boundary conditions are 
found to be very efficient in absorption of the edge 
reflections especially in absorbing the Rayleigh waves at 
the free surface. 
 

Theory  
 
I have applied the velocity-stress finite difference method 
(Virieux, 1986) to P-SV wave equation.  This method uses 
the basic elastodynamic equations in terms of velocity and 
stress which represents a firstorder hyperbolic equation.  
Let us consider a 2-D medium with a horizontal axis x and 
vertical axis z pointing downward. The medium is assumed 

linearly elastic and isotropic. Then the equations are given 
as 
 

 
 

 
 
Here    and    are the horizontal and vertical components of 

displacement, ( txx, tzz, txz ) is the stress tensor, ρ (x,z) is the 

density, λ (x,z) and µ (x,z) are Lame coefficients. This 

system is transformed into the following first-order 
hyperbolic system 
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Here (vx, vz) is the velocity vector,  b(x,z) is lightness or 

buoyancy which is the reciprocal of density.  
 

The discretization of (3) and (4) leads to a unique staggered 
grid as shown in Fig. 1.   
 

 
Figure 1: Discretization of medium on a staggered grid. White 

symbols are for stresses and Lame parameters at time 

Black symbols are for velocities and buoyancy at time 

     

In order to formulate the equations for perfectly matched 
layer, we need to write the equations of elastodynamics in a 
stretched coordinate system.  This is obtained by defining 
the nebula operator for the stretched coordinates as   

Here, ex, ey and  ez are the stretching variables. Chew and 
Liu (1996) showed that in order to have a perfectly 

matched interface, the stretching variable in the direction 
normal to that interface need not be the same on the two 

sides of the interface. To understand it better, let us assume 
a 2D medium whose x-axis is along horizontal direction 
and z-axis is positive downward. Suppose a perfectly 
matched layer is orthogonal to x-axis, then e1z = e2z = e1x = 
1 and e2x should take a complex value in order to 

exponentially attenuate a plane wave incident at the 
perfectly matched interface from the interior of the 
computational domain. 
 

Let us take  where Ωx is a real scalar function 

of the distance x from the interface and ω is the angular 
frequency. The variables are chosen to be frequency 
dependent since the Fourier transform of a real-valued 
function will always have iω appearing together. For 

continuity reasons, Ωx should be zero on the perfectly 

matched interface. Since we have taken the interface to be 

perpendicular to the x  -axis, therefore Ωz = 0  

 
I have used the second-order finite difference scheme for 
the PML as proposed by Festa and Nielsen (2003). 
 

Numerical modeling and results 
 
A point source directed vertically downward is used. The 
source time function is a Gaussian pulse given by 

 
 
In order to show the effect of PML boundary conditions in 
case of body wave absorption, I have chosen a full-space 

whose physical property parameters are listed below: 
    

 
 

The synthetic seismograms obtained at a lateral point in 
case of the full space with PML absorbing boundary 
conditions (ABC) and with rigid boundaries are shown in 
Fig. 2.  
 
I have also modeled wave propagation in a solid halfspace 
in contact with air such that the planar free surface is 
horizontal and aligned with the numerical grid. In case of 
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staggered grid, I have modeled the free surface using stress-
imaging method (Graves, 1996). The physical property 
parameters of the half-space model are listed below: 

 
 

 
Figure 2: Vertical component seismograms obtained using a 

staggered grid for a point at lateral distance of 6000 m from source 

in an infinite medium. Edge reflections can be seen in the 

seismogram obtained without application of the absorbing 

boundary condition. The application of perfectly matched layer has 

completely suppressed these edge reflections. 

 

 
Figure 3: Horizontal component seismogram computed on a 

staggered grid with  N λ = 12.25 using stress imaging at a point 

shifted by half grid spacing along horizontal and vertical axes from 

the point at a lateral distance of 6000 m from source in a solid half-

space. 

 

 
Figure 4: Vertical component seismogram computed on a 

staggered grid with N λ = 12.25  using stress image method at a 

point whose lateral distance is 6000 m from the source in a solid 

half-space. 

 

Conclusions  
 
The perfectly matched layer (PML) boundary conditions 
are very efficient in absorption of edge reflections. PML 
boundary conditions provide excellent absorption of body 
waves as well as Rayleigh waves as shown in Fig. 2 and 3. 
In both the numerical examples, I have taken 10 grid points 
thick PML layer. Even for wavelengths much larger than 
the PML thickness, the absorption is very efficient.    
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