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Summary  
 

The solution to stochastic partial differential equations may be viewed in several manners. One can view a solution as a random 

field (set of random variables indexed by a multidimensional parameter). In the case where the SPDE is an evolution equation, 

the infinite dimensional point of view consists in viewing the solution at a given time as a random element in a function space and 

thus views the SPDE as a stochastic evolution equation in an infinite dimensional space. In the path wise point of view, tries to 

give a meaning to the solution for (almost) every realization of the noise and then view the solution as a random variable on the 

set of (infinite dimensional) paths thus defined.   

 

The main focus of this paper is on mathematical formulation of the physical model is obtained, usually involving coupled systems 

of non-linear partial differential equations. This can be best done by using Stochastic Partial Differential Equations, which can 

take care of randomness of the event and gives the most precise measure of the results. 

 

Introduction  
 
A stochastic partial differential equation (SPDE) is a partial 
differential equation containing a random (noise) term. The 
study of SPDEs is an exciting topic which brings together 

techniques from probability theory, functional analysis, and 
the theory of partial differential equations.  
 
Over the past two decades the exploration of stochastic 
partial differential equations (SPDEs) has become one of 
the most rapidly expanding areas in Probability Theory. In 
addition to applications to numerous problems in 
Mathematical Physics and Life Sciences, interest in such 

studies is motivated by a desire to understand and control 
the behavior of complex systems that appear in many areas 
of natural and social sciences.  
 

The objective of reservoir simulation is to understand the 

complex chemical, physical and fluid flow processes 

occurring in a petroleum reservoir sufficiently well to be 

able to optimize the recovery of hydrocarbon. In order to 

predict the reservoir performance, a series of models of 

reservoir processes are constructed which yield information 

about the complex phenomena accompanying different 

recovery methods. In this paper, various approaches to the 

use of mathematical models for reservoir simulation 

problems are presented and compared. There are four major 

stages to the modeling process for reservoir simulation. 

First, a physical model of the flow processes is developed 

incorporating as much physics is deemed necessary to 

describe the essential phenomena. Second, a mathematical 

formulation of the physical model is obtained, usually 

involving coupled systems of non-linear partial differential 

equations. Third, once the properties of mathematical 

model, such as existence, uniqueness and regularity of the 

solution are sufficiently well understood and the properties 

seem compatible with the physical model, a discretized 

numerical model of the mathematical equations is 

produced. Finally, a computer program capable of 

efficiently performing the necessary computations for the 

numerical model is sought.  
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Theory  

 
The modeling process is not complete just passing the four 

described above steps. Once a computer program has been 
developed which gives concrete quantitative results for the 
total model, this output should be compared with measured 
observations of the physical process. If the results do not 
compare extremely well, one should iterate back through 
the complete modeling process, changing the various 
intermediate models in ways to obtain better correlation 
between physical measurements and the computational 
results. Usually many iterations of this modeling loop are 

necessary to obtain reasonable models for the highly 
complex physical phenomena. 
 

3.1 Description of problems in reservoir simulation  

 
a) In general, the hydrocarbon is trapped in the microscopic 
pores of a rock (which further defines the porosity of the 
rocks) and will flow through the rock only under the 

influence of extremely large pressure differentials. Also, as 
the geology in the reservoir changes, the reservoir often has 
areas of high flow and areas of reduced flow. This 
heterogeneous nature of most reservoirs greatly 
complicates the mathematical modeling process, especially 
since the reservoir is inaccessible and first -hand 
information about its porosity can only be obtained through 
the wells, which may be hundreds of yards apart. 

 
b) In water flooding, if flow rate is sufficiently high, the 
interface between the resident petroleum and the invading 
water becomes unstable and tends to form long fingers 
which grow in length towards the production wells, 
bypassing much of the hydrocarbons. The production of 
petroleum from that well is then greatly reduced. This 
phenomenon is termed as viscous fingering and is serious 

problem in hydrocarbon recovery. 
 
c) Among the various types of recovery techniques 
available involve many different physical processes; there 
are certain common mathematical problems which must be 
addressed. First, the EOR (Enhanced Oil Recovery) 
displacement processes are dominated by convective flow 
from the injection wells to the production wells. Therefore, 

mathematical models for each of these enhanced recovery 
techniques must have strong transport terms and must 
possess many of the properties of first order hyperbolic 
partial differential equations. Another important common 

phenomenon in each of the models is the importance of the 
location of the interface between the injected fluid and the 
resident fluid. The location of this interface indicates how 
much of and where the hydrocarbons are left in the 
reservoir as a function of time. 

 

3.2 Development of Representative Model Equations  
 
Fluid motions in porous media are governed by the same 
fundamental laws that govern their flow in pipelines and 
rivers. These laws are based on conservation of mass, 
momentum and energy. Additional governing equations are 
rate equations, generally a form of Darcy’s Law and 

equations of state. Since we usually do not have a complete 
knowledge of the total behavior of the system, a major 
difficulty in the modeling procedures is the choice of a set 
of equations which accurately describes the complex 
physical process. From Darcy’s Law superficial fluid 
velocity of a homogenous fluid with volumetric flow Q 
passing normally through a cross sectional area A is given 
by- 

 

 
 …(3.2.1) 

Where µ is the viscosity of the fluid, p is the fluid pressure, 
ρ is the fluid density, g is the magnitude of the acceleration 

due to gravity, the depth Z is a vector function of (x, y, z) 
pointing in the direction of gravity, and k is a absolute 
permeability tensor, which in most uses is assumed that k is 
the special diagonal tensor 
 

 
…(3.2.2) 

Where kx, ky, and kz are interpreted as permeabilities in 
the x, y and z direction respectively. 
 

If  is the porosity of the material denotes the fraction of 

volume V available for flow and q is the mass flow rate per 

unit volume injected (or produced from) V, then from 
equation of conservation of mass we have-   
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…(3.3.3) 

If we use divergence theorem to see that 

 
…(3.3.4) 

And interchange d/dt with the spatial integration, 
 

 
…(3.3.5) 

We obtain 
 

 
…(3.3.6) 

Since equation (3.3.6) is to hold for any volume element V, 
we obtain the partial differential equation (pde) form for 

single – phase flow subject to a superficial velocity   

 

 
…(3.3.7) 

Combining (3.3.1) and (3.3.7), we obtain 
 

 
…(3.3.8) 

Where Ω is our spatial domain and [t0, t1] is the time 
interval under consideration.  

 
Note that (3.3.8) is a second order pde in the two dependent 
variables p = pressure and ρ = density. By expressing p as a 
function of ρ, or vice versa, we can obtain a pde in only one 
independent variable. This is accomplished by use of an 

equation of state describing the relationship between p and 

ρ.   
 
As an equation of state, we shall use the definition of fluid 
compressibility, c, at a fixed temperature T: 

 

 
…(3.3.9) 

This can be expressed in terms of density: 

 

 
…(3.3.10) 

Separating variables in (3.3.10) and denoting ρ0 as the 
density at pressure p0, we obtain 
 

 
…(3.3.11) 

Or equivalently, 
 

 
…(3.3.12) 

Thus there is a one-to-one, invertible mapping between p 
and ρ described by (3.3.11) or (3.3.12). Therefore using the 
chain rule, (3.3.8) can be written as single pde for the 
density 
 

 
…(3.3.13) 

Since (3.3.13) is a parabolic pde it requires an initial 
specification of the density throughout the domain and 
boundary conditions. 
 

 
…(3.3.14) 
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Usually, Nuemann boundary conditions or the 
specifications of the mass flow across the boundary, is 
used: 
 

 
…(3.3.15) 

However, in some situations when the density (or pressure) 
can be measured at the boundary, Dirichlet conditions are 

imposed. If the compressibility of the fluid is small as it is 
for man y liquids, then the Taylor series expansion for the 
exponential in (3.3.12) ca n be truncated and the 
assumption can be made that 
 

 
…(3.3.16) 

Under this assumption, a pde for pressure can be written 
from (3.3.13) 
 

 
…(3.3.17) 

Under the even stricter assumption that the fluid is 
incompressible (c=0), we can obtain from (3.3.17) the 

elliptic pde  
 

 
…(3.3.18) 

This is also the form of the equation for steady-state 

  flow. Thus for either incompressible 
fluids or steady-state flow, from (3.3.3) we see that if 
Neumann boundary conditions or mass flow rates are 
specified on all of the boundary, then for a solution to 
equation (3.3.18) to exist, we must have 

 

 
And flow into all of t he injection wells must be exactly 
balanced by flow out of all of the production wells. Also 

for (3.3.18) with only flow boundary conditions, the 

pressure is only determined to within a constant; if  

satisfies (3.3.18), then  + satisfies (3.3.18) for any 

constant  . This lack of uniqueness causes no problems as 

long as it is understood and taken in to account in the 
simulation. 
 
If we consider (3.3.6) as the governing equation instead of 
its counterpart (3.3.7) the “point source” interpretation is 
not so crucial as long as the well is not at the boundary of 
the computational element. Most of the simulation done in 
the petroleum industry today uses a different type of well 

model which can more easily accommodate the 
specification or computation of bottom hole pressures at the 
wells. These models are based on analytical solutions for 
steady-state radial flow equations and incorporate the size 
of the computational grid blocks and the true well bore 
radius. The simplest versions of these models relate the 
pressure p at a distance r from the well to the volumetric 
flow rate q via the equation  

 
…(3.3.19) 

Where pe is the pressure at the “effective” drainage radius 
re and h is the thickness of the region of assumed radial 

flow. The single phase flow equations developed above are 
not sufficient to model the simultaneous interactive flow of 
two or more phases; this type of flow dominates essentially 
all the Enhanced Recovery Processes (ERO). So, we need 
to derive equations for multi- phase flow in porous media. 
 
Let us first assume that we have two immiscible fluid 
phases flowing simultaneously and there is no mass transfer 
between the fluids. Fluid wetting the porous medium more 

than the other is termed as wetting phase fluid (subscript 
used w) and the other is known as non- wetting fluid 
(subscript used n). The saturation of a phase is the fraction 
of the space available to flow occupied by that phase. Since 
both phases are flowing we have, 

 
…(3.3.20) 

We also have separate pressures for each phase pw and pn. 
The difference between these pressures is the capillary 
pressure pe. 
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…(3.3.21) 

 
Each phase will have its density, viscosity and Darcy’s 
velocity analogous of (3.3.1), which can be written as:   
 

 
…(3.3.22a) 

 

 
…(3.3.22b) 

Where symbols have their usual scientific meanings. In the 
simultaneous flow of two fluids, each flow interferes with 
the flow of the other and the effective permeabilities are 
less than or equal to the single phase permeability k of 
porous medium. We define relative permeabilities as 
 

 
…(3.3.23a) 

 
…(3.3.23b) 

The same arguments which led to (3.3.8) will t hen yield 
the system, for x  Ω and t  [t0, t1], 
 

 
…(3.3.24a&b) 

 
The equations are coupled via the constraints (3.3.20) and 
(3.3.21) and the pressures and densities for each phase are 
related by equations of state of the form 
 

 
…(3.3.25a&b) 

Since the system (3.3.24) resembles equation (3.3.11) 

closely one might think that it is a system of parabolic pde's 
with diffusion- like properties. This is not necessarily the 
case.  We can see the properties more clearly under the 
assumptions that the densities of the phases and the 
porosity are constants and there are no gravity terms. Then 
defining the total and phase mobilities as  
 

 
…(3.3.26a&b) 

 
Defining the average pressure as 
 

 
…(3.3.27) 

 
And defining the total fluid velocities as 
 

 
…(3.3.28) 

 
We can add and subtract the equations in (3.3.24) and 
collect terms to obtain for x  Ω and t  [t0, t1], 

 

 
…(3.3.29a&b) 
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Where f is a simple linear function of the flow properties. If 
either fluid or the rock is compressible then (3.3.29a) 
becomes: 
 

 
…(3.3.30) 

 
Where ct is the total compressibility of the system given as 
 

 
…(3.3.31) 

 
The equation for saturation (3.3.29b) is similar to a non 
linear convection- diffusion equation. The governing 
equations for the miscible displacement of one 
incompressible fluid by another in a porous medium are 
given by: 
 

 
…(3.3.32a&b) 

 
For x  Ω and t  [t0, t1], where p and are the total fluid 

pressure and velocity, S is the saturation of the invading 

fluid, is the specified injection or resident production 

saturation of the injected fluid and q is the total volumetric 
flow rate at the well. D is the diffusion- dispersion tensor 
given by: 
 

 
…(3.3.33) 

 
Where  = (u1, u2), | | is the Euclidean norm of , dm is 

the molecular diffusion coefficient and d1 and d2 
 are the magnitudes of longitudinal and transverse 

dispersion.  
 

As before, if the fluids are compressible, the elliptic pde 
(3.3.32) will become parabolic. In general is dm is assurned 
to be very small with d1 and d2 somewhat larger. Since the 
magnitudes of the last two terms in D are approximately d1 

| |or d2 | | we see more dispersive mixing where the 

velocities are higher around the wells and less out in the 

reservoir. Therefore although the systems (3.3.29) and 
(3.3.32) appear to be very similar, there are some important 
differences. Both are transport dominated but not purely 
hyperbolic systems.  
 

4. Conclusions  
 
So, the mathematical modeling for Reservoir Simulation is 
explained in the above discussion. But even after taking so 
much care and possibilities some problems still prevails 

during the simulation and hence on the results and 
interpretations. Some of them are as follows: 
 
a) The artificial diffusion or numerical diffusion does 
stabilize the difference method but the numerical error 
induced can be disastrous to reservoir simulation and can 
destroy the physical information in the model (Fig.1). 
 

 
 
b) Another disastrous effect of upstream weighting of the 

transport term is a phenomenon of obtaining drastically 
different numerical predictions from simulators due only to 
different spatial orientations of the computational grid, if 
upstream weighting is used for transport terms in each of 
the x, y. and z directions, and one will obtain an artificial 
dispersion term of the form 
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Which is not rotationally invariant and is thus directionally 
dependent. (See Fig.2) 
 

 
 
A variety of methods sequentially solving the governing 
equations in an implicit manner without the full coupling 
have also been developed. These methods have less 
stability but better computational features than fully 
coupled, fully implicit methods but more stability and 

somewhat worse computational properties than Implicit 
Pressure Explicit Saturation (IMPES).   
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