Effect of Structure on Wide Azimuth Acquisition and Processing

Bruce VerWest and Dechun Lin,
CGGVeritas, Houston, TX

Summary

This model study shows that narrow azimuth acquisition may be adequate for structures which are oriented dip to the acquisition direction but strike components are not well imaged. Wide azimuth acquisition with sufficient cross line offset gives improved results compared to narrow azimuth acquisition for both dip and strike components since this method is actually “directionless”. Also, 3D SRME on narrow azimuth data shot dip gives a good image but narrow azimuth strike data does not yield a comparable uplift from 3D SRME. The application of 3D SRME to wide azimuth data shot either dip or strike yields a very good image which is superior to any of the results without 3D SRME. Finally, results from the datasets without multiples shows dip components are well imaged with narrow azimuth acquisition but strike components may not be. Even if one suppresses all the multiples, wide azimuth is needed to image the strike components of the structure. While the wide azimuth results with 3D SRME show significant improvement over the narrow azimuth results, comparison with the results with no free surface multiples show that improvements can still be made in this technique. Finally, a real data comparison of NAZ versus WAZ acquisition and processing shows that the observations seen in the model data are also confirmed in the real data.

Introduction

Recent studies (Michell, et al., et al, 2006) have shown that wide azimuth (WAZ) acquisition can lead to significantly better results in subsalt imaging compared to traditional narrow azimuth (NAZ) acquisition. An integral part of these studies was the use of 3D model data to guide and evaluate the acquisition designs (Regone, 2006). Additional studies have shown that the reduction of multiple noise in the resulting images comes from the way the multiples cancel in the stack due to the areal distribution of the receivers (VerWest and Lin, 2006). In addition it has been shown that 3D SRME performs better with WAZ input data and can further improve the subsalt images. However, in recent model tests of WAZ acquisition using 2.5D model data, the 3D SRME results using NAZ acquisition yielded results nearly as good as the WAZ results, leading to the question of whether WAZ is really needed. In this paper we will show that the improvement in the images for WAZ versus NAZ acquisition depends on the orientation of the survey to the structural dip of the subsurface. To remove the multiples and to properly image the strike components of the structure, NAZ data is insufficient and WAZ acquisition yields improved results. Since 3D structures have a combination of dip and strike components, the imaging of the strike components is the critical component in the improved images form WAZ acquisition.
Modelling and Processing of WAZ Data

Acoustic two-way finite difference modelling was used to generate data both with and without free surface multiples. The input velocity model is shown in Figure 1. The model was a 2D model of a salt related structure in the deep water Gulf of Mexico. It was extended in the perpendicular direction for the sake of generating wide azimuth data. Shots were modelled with receivers running the length of the section and extending 6000m perpendicular to the shots. The bandwidth of the data is 0 to 20 HZ with a peak frequency at 6 Hz. The resulting dataset was decimated to
yield a variety of acquisition scenarios. First, the receivers for each shot were limited to +/-8000m offset along the section (inline offset) and 0 to 4000m perpendicular to the section (cross line offset). We will refer to this as the “WAZ Dip” dataset. This was then further restricted to the range of 0 to 500m perpendicular to the section which produced the “NAZ Dip” dataset. Then another dataset was generated with offsets +/-6000m perpendicular to the section (inline offset) and 0 to 4000m along the section (cross line offset). We will refer to this dataset as the “WAZ Strike” dataset. This dataset was then further restricted to 0 to 500m along the section to produce the “NAZ Strike” dataset. For all the results in this paper, the sailline spacing was 250m and the shot spacing within a sailline was 150m. Other results have also been generated with a 500m sailline spacing for comparison.

The NAZ and WAZ data with free surface multiples was processed with 3D SRME (Lin, et al., 2007) to test the effectiveness of this multiple removal technique for different acquisition configurations and orientations. The datasets with multiples, both with and without 3D SRME, and without multiples were then imaged using finite difference common shot migration for both the NAZ and WAZ acquisition and the dip and strike directions. In all cases the final image bin size was 25x50m.

Imaging Results

The subsalt images for the NAZ acquisition for both dip and strike orientation are shown in Figure 2. Both sections show considerable multiple contamination but the dip result is slightly better. The left base of salt is recognizable as well as the flat reflector at the bottom of the section. The WAZ result is shown in Figure 3. Here the image is significantly improved over the NAZ result and the dip and strike results are similar even though they have slightly different residual noise. This is not unexpected since as the cross line offset of the WAZ acquisition is increased the surveys become directionless. One notable difference in the two results is the shadow below the base of salt in the strike result. The 4 km cross line offset was insufficient to undershoot the salt in the strike orientation while the 8 km inline offset was sufficient to partially undershoot the salt in the dip orientation.

![Figure 4](image1.png)
Figure 4. The imaging results for NAZ acquisition including 3D SRME.

![Figure 5](image2.png)
Figure 5. The imaging results for WAZ acquisition including 3D SRME.
The 3D SRME results for the NAZ and WAZ acquisition are shown in Figures 4 and 5. The “NAZ Dip” result with 3D SRME is significantly better than the “NAZ Dip” result without 3D SRME and is slightly noisier and almost as good as the “WAZ Dip” result without 3D SRME. This result led to the questioning of the value of WAZ acquisition. It appeared that nearly equivalent results could be obtained simply by using 3D SRME on NAZ data. However, the situation is very different for the strike orientation. Here the “NAZ Strike” result with 3D SRME is better than without 3D SRME but still shows considerable multiple contamination beneath the deeper salt body and the flat event at the bottom of the section is still unrecognizable. The 3D SRME results on the WAZ data show significant improvement. These results again are similar for the dip and strike orientation except for the shadow beneath the salt in the strike orientation. These results are considerably better than the WAZ results without 3D SRME shown in Figure 3. Other tests with a 2 km WAZ acquisition configuration have shown that 2 km WAZ acquisition with 3D SRME may yield better images than 4 km WAZ acquisition without 3D SRME.

Finally, Figure 6 shows the NAZ results from the model data with no free surface multiples. The dip results for WAZ and NAZ are nearly identical and all the elements of the model are clearly distinguishable. However, the “NAZ Strike” results are not as good. There is considerable swing noise beneath the salt and associated with the flat reflector and some of the events of the anticline structure are broken. Figure 7 shows the WAZ results from the model data with no free surface multiples. The “WAZ Strike” image is very good and equivalent to the dip results except for the shadow beneath the deepest part of the salt which had been commented on previously.

Real Data Example

WAZ data has been acquired over a portion of the Walker Ridge area of the deep water Gulf of Mexico. This is the same area that the data in this study was simulating. In addition the WAZ acquisition parameters are the same as the model data. NAZ data had previously been acquired and imaged using prestack depth migration over this same area. The NAZ data were fully processed using various noise reduction algorithms, 3D SRME and then imaged using wave equation prestack depth migration. The WAZ data were recently acquired and so far has only been processed with a simple filter and gain and then imaged with wave equation prestack depth migration using the same velocity model that was derived from and used in the NAZ imaging. First, the WAZ data shows better definition of a number of the complex features at the top of salt. In addition, the base of salt is better defined in the WAZ data. Finally, beneath the salt there is a significant improvement in the image continuity and a reduction of noise in the WAZ image. The WAZ data has had no multiple suppression processing applied but the natural multiple suppression due to the areal WAZ acquisition has reduced the multiple noise in this part of the section. Thus the real data shows the same improvement in the subsalt image that was predicted using the synthetic seismic data.

![Figure 6. The imaging results for NAZ acquisition with no free surface multiples.](image)
Conclusions

This model study has shown that NAZ acquisition may be adequate for structures which are oriented dip to the acquisition direction but strike components are not well imaged. The WAZ acquisition with sufficient cross line offset gives similar improved results compared to NAZ acquisition for both dip and strike components since this method is actually “directionless”. Also, 3D SRME on NAZ data shot dip gives a good image but NAZ strike data does not get a comparable uplift from 3D SRME. The application of 3D SRME to WAZ data shot either dip or strike yields a very good image which is superior to any of the NAZ or WAZ results without 3D SRME. In addition, WAZ data with more limited cross line offsets with 3D SRME may produce a better image than WAZ data without 3D SRME and a larger cross line offset range. Finally, results from the datasets without multiples shows dip components are well imaged with NAZ acquisition but strike components may not be. Even if one suppresses all the multiples, WAZ is needed to image the strike components of the structure. While the WAZ results with 3D SRME show significant improvement over the NAZ results, comparison with the results with no free surface multiples show that improvements can still be made in this technique. In addition, the real data from the same area shows that WAZ acquisition and processing yields the same image improvements compared to NAZ acquisition that are predicted by the model data.

Acknowledgements

We thank CGGVeritas management for permitting us to publish this paper. We also thank Chevron USA for allowing us to show the synthetic seismic data results and Scott Neal, Jennifer Lewis, Brad Hoffman and Joe Stefani for their assistance in generating the data and Wen-Jack Lin of CGGVeritas for his efforts in 3D SRME development. We also thank Zheng Meng and Qing Xu for their work in processing the synthetic data.

References

Lin, D., Lin, W., and VerWest, B., 2007, 3D SRME for Wide Azimuth Data; 69th EAGE Conference, Expanded Abstracts, B037.

VerWest, B., and Lin, D., 2007, Modeling the Impact of Wide Azimuth Acquisition on Subsalt Imaging; to be published, Geophysics, 72.